• Chinese Journal of Lasers
  • Vol. 47, Issue 9, 905002 (2020)
Wei Yun1 and Fang Yuntuan1、2、*
Author Affiliations
  • 1School of Computer Science and Telecommunication Engineering, Jiangsu University,Zhenjiang, Jiangsu 212013, China
  • 2Jiangsu Key Laboratory of Security Technology for Industrial Cyberspace, Jiangsu University,Zhenjiang, Jiangsu 212013, China
  • show less
    DOI: 10.3788/CJL202047.0905002 Cite this Article Set citation alerts
    Wei Yun, Fang Yuntuan. Coding Control of Optical Path of Two-Dimensional Magneto-Optical Photonic Crystal[J]. Chinese Journal of Lasers, 2020, 47(9): 905002 Copy Citation Text show less
    References

    [1] Liang L X, Zhang X J, Wu X S et al. Terahertz filter and optical switch based on magnetic-photonic crystals[J]. Acta Optica Sinica, 38, 0513002(2018).

    [2] Wang L S, Gao Y F, Zhao S C et al. Study on multiple channel non-reciprocal transmission characteristics of one-dimensional magneto-optical photonic crystal[J]. Laser & Optoelectronics Progress, 55, 042301(2018).

    [3] Wang J L, Liu Y, Chen H M. Design on terahertz polarization beam splitter based on self-collimating effect of photonic crystal[J]. Acta Optica Sinica, 38, 0423001(2018).

    [4] Zhang Q Y, Li X. One-way rotating photonic crystal ring resonator with high quality factor[J]. IEEE Photonics Journal, 10, 17799886(2018).

    [5] Banerjee R. Liew T C H, Kyriienko O. Realization of Hofstadter's butterfly and a one-way edge mode in a polaritonic system[J]. Physical Review B, 98, 075412(2018).

    [6] He L J, Shen Q, Xu J et al. One-way edge modes in a photonic crystal of semiconductor at terahertz frequencies[J]. Scientific Reports, 8, 8165-8172(2018).

    [7] Fang Y T, Hu J X, Xu Q S et al. Magneto-optical storage system based on the coupling of the one-way edge modes and micro cavity modes[J]. Chinese Journal of Lasers, 42, 1106001(2015).

    [8] Gao Y F, He L, Xu X F et al. Achievement of unidirectional air waveguide with extra-broad operation bandwidth in magneto-optical photonic crystals with a triangle lattice[J]. Journal of Magnetism and Magnetic Materials, 496, 165921(2020).

    [9] Goryachev M, Tobar M. Reconfigurable microwave photonic topological insulator[J]. Physical Review Applied, 6, 064006(2016).

    [10] Lu J C, Chen X D, Deng W M et al. One-way propagation of bulk states and robust edge states in photonic crystals with broken inversion and time-reversal symmetrie[J]. Journal of Optics, 20, 075103(2018).

    [11] Cheng X J, Jouvaud C, Ni X et al. Robust reconfigurable electromagnetic pathways within a photonic topological insulator[J]. Nature Materials, 15, 542-548(2016).

    [12] Li C, Hu X Y, Gao W et al. Thermo-optical tunable ultracompact chip-integrated 1D photonic topological insulator[J]. Advanced Optical Materials, 6, 1701071(2018).

    [13] Leykam D, Mittal S, Hafezi M et al. Reconfigurable topological phases in next-nearest-neighbor coupled resonator lattices[J]. Physical Review Letters, 121, 023901(2018).

    [14] Shalaev M I, Desnavi S, Walasik W et al. Reconfigurable topological photonic crystal[J]. New Journal of Physics, 20, 023040(2018).

    [15] Dobrykh D, Yulin A, Slobozhanyuk A et al. Nonlinear control of electromagnetic topological edge states[J]. Physical Review Letters, 121, 163901(2018).

    [16] Zhao H, Qiao X D, Wu T W et al. Non-Hermitian topological light steering[J]. Science, 365, 1163-1166(2019).

    [17] Cui T J, Qi M Q, Wan X et al. Coding metamaterials, digital metamaterials and programmable metamaterials[J]. Light: Science & Applications, 3, e218(2014).

    [18] Yan X, Liang L J, Zhang Y T et al. A coding metasurfaces used for wideband radar cross section reduction in terahertz frequencies[J]. Acta Physica Sinica, 64, 158101(2015).

    [19] Liu S, Cui T J, Xu Q et al. Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves[J]. Light: Science & Applications, 5, e16076(2016).

    [20] Zhang L, Liu S, Cui T J. Theory and application of coding metamaterials[J]. Chinese Journal of Optics, 10, 1-12(2017).

    [21] Wu H T, Liu S, Wan X et al. Metamaterials: controlling energy radiations of electromagnetic waves via frequency coding metamaterials[J]. Advanced Science, 4, 1770043(2017).

    [22] Bao L, Ma Q, Bai G D et al. Design of digital coding metasurfaces with independent controls of phase and amplitude responses[J]. Applied Physics Letters, 113, 063502(2018).

    [23] Xia J P, Jia D, Sun H X et al. Programmable coding acoustic topological insulator[J]. Advanced Materials, 30, 1805002(2018).

    [24] Ordal M A, Long L L, Bell R J et al. Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared[J]. Applied Optics, 22, 1099-1020(1983).

    [25] Ordal M A, Bell R J, Alexander R W et al. Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W[J]. Applied Optics, 24, 4493-4499(1985).

    [26] Veis M, Antos R, Visnovsky S et al. Complete permittivity tensor in sputtered CuFe2O4 thin films at photon energies between 2 and 5 eV[J]. Materials (Basel, Switzerland), 6, 4096-4108(2013).

    [27] Bergman D J. The dielectric constant of a composite material: a problem in classical physics[J]. Physics Reports, 43, 377-407(1978).

    Wei Yun, Fang Yuntuan. Coding Control of Optical Path of Two-Dimensional Magneto-Optical Photonic Crystal[J]. Chinese Journal of Lasers, 2020, 47(9): 905002
    Download Citation