• Chinese Optics Letters
  • Vol. 23, Issue 6, 061404 (2025)
Zhihao Li1, Jianghao Li1, Yanyan Huo1, Yangjian Cai1,2,*, and Yuan Wan1,**
Author Affiliations
  • 1Shandong Provincial Engineering and Technical Center for Light Manipulation and Shandong Provincial Key Laboratory of Optics and Photonic Devices, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
  • 2Joint Research Center of Light Manipulation Science and Photonic Integrated Chip of East China Normal University and Shandong Normal University, East China Normal University, Shanghai 200241, China
  • show less
    DOI: 10.3788/COL202523.061404 Cite this Article Set citation alerts
    Zhihao Li, Jianghao Li, Yanyan Huo, Yangjian Cai, Yuan Wan, "Dynamic coherence control of random lasers and its effect on speckle and edge sharpness of images," Chin. Opt. Lett. 23, 061404 (2025) Copy Citation Text show less
    References

    [1] K. V. Chellappan, E. Erden, H. Urey. Laser-based displays: a review. Appl. Opt., 49, F79(2010).

    [2] J. C. Dainty. Laser Speckle and Related Phenomena(2013).

    [3] J. W. Goodman. Speckle Phenomena in Optics: Theory and Applications(2007).

    [4] D. S. Mehta, K. Saxena, S. K. Dubey et al. Coherence characteristics of light-emitting diodes. J. Lumin., 130, 96(2010).

    [5] Y. B. Deng, D. P. Chu. Coherence properties of different light sources and their effect on the image sharpness and speckle of holographic displays. Sci. Rep., 7, 5893(2017).

    [6] B. Redding, M. A. Choma, H. Cao. Speckle-free laser imaging using random laser illumination. Nat. Photonics, 6, 355(2012).

    [7] Y. Peng, S. Choi, J. Kim et al. Speckle-free holography with partially coherent light sources and camera-in-the-loop calibration. Sci. Adv., 7, eabg5040(2021).

    [8] N. Barré, A. Jesacher. Holographic beam shaping of partially coherent light. Opt. Lett., 47, 425(2022).

    [9] P. A. Moreau, E. Toninelli, T. Gregory et al. Ghost imaging using optical correlations. Laser Photonics Rev., 12, 1700143(2018).

    [10] Y. Kato, K. Mima, N. Miyanaga et al. Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression. Phys. Rev. Lett., 53, 1057(1984).

    [11] K. Nagata, T. Umebara. Spatial correlation of Gaussian beam in moving ground glass. J. Appl. Phys., 12, 694(1973).

    [12] F. Wang, Y. Cai. Experimental generation of a partially coherent flat-topped beam. Opt. Lett., 33, 1795(2008).

    [13] A. S. Ostrovsky, E. Hernández García. Modulation of spatial coherence of optical field by means of liquid crystal light modulator. Rev. Mex. Fis., 51, 442(2005).

    [14] F. J. Duarte, L. S. Liao, K. M. Vaeth. Coherence characteristics of electrically excited tandem organic light-emitting diodes. Opt. Lett., 30, 3072(2005).

    [15] S. Lee, D. Kim, S. Nam et al. Light source optimization for partially coherent holographic displays with consideration of speckle contrast, resolution, and depth of field. Sci. Rep., 10, 18832(2020).

    [16] H. Cao, Y. G. Zhao, S. T. Ho et al. Random laser action in semiconductor powder. Phys. Rev. Lett., 82, 2278(1999).

    [17] X. G. Meng, K. Fujita, S. Murai et al. Coherent random lasers in weakly scattering polymer films containing silver nanoparticles. Phys. Rev. A, 79, 1744(2009).

    [18] L. H. Ye, F. J. Li, C. G. Lu et al. The controllable intensity and polarization degree of random laser from sheared dye-doped polymer-dispersed liquid crystal. Nanophotonics, 7, 473(2018).

    [19] Y. X. Bian, H. Y. Xue, Z. N. Wang. Programmable random lasing pulses based on waveguide-assisted random scattering feedback. Laser Photonics Rev., 15, 2000506(2021).

    [20] Y. Wan, H. Z. Wang, H. W. Li et al. Low-threshold random lasers enhanced by titanium nitride nanoparticles suspended randomly in gain solutions. Opt. Express, 30, 8222(2022).

    [21] G. Strangi, S. Ferjani, V. Barna et al. Random lasing and weak localization of light in dye-doped nematic liquid crystals. Opt. Express, 14, 7737(2006).

    [22] S. Ferjani, V. Barna, A. De Luca et al. Random lasing in freely suspended dye-doped nematic liquid crystals. Opt. Lett., 33, 557(2008).

    [23] D. W. Zhang, C. T. Xu, Q. M. Chen et al. Cascaded chiral birefringent media enabled planar lens with programable chromatic aberration. PhotoniX, 5, 17(2024).

    [24] C. T. Xu, B. H. Liu, C. Peng et al. Heliconical cholesterics endows spatial phase modulator with an electrically customizable working band. Adv. Opt. Mater., 10, 2201088(2022).

    [25] B. Redding, M. A. Choma, H. Cao. Spatial coherence of random laser emission. Opt. Lett., 36, 3404(2011).

    [26] R. Polson, Z. Vardeny. Random lasing in human tissues. Appl. Phys. Lett., 85, 1289(2004).

    [27] N. Ghofraniha, I. Viola, F. DiMaria et al. Experimental evidence of replica symmetry breaking in random lasers. Nat. Commun., 6, 6058(2015).

    [28] Y. L. Liu, W. H. Yang, S. M. Xiao et al. Surface-emitting perovskite random lasers for speckle-free imaging. ACS Nano, 13, 10653(2019).

    [29] J. H. Tong, X. Y. Shi, L. Z. Niu et al. Dual-color plasmonic random lasers for speckle-free imaging. Nanotechnology, 31, 465204(2020).

    [30] S. P. Mallick, Z. Sung. Holographic image denoising using random laser illumination. Ann. Phys., 532, 2000323(2020).

    [31] Y. Wan, Z. H. Li, Z. X. Liu et al. Robust speckle-free imaging using random lasers enhanced by TiN nanoparticles in complex scattering environments. Nanophotonics, 12, 4307(2023).

    [32] A. Boschetti, A. Taschin, P. Bartolini et al. Spectral super-resolution spectroscopy using a random laser. Nat. Photonics, 14, 177(2020).

    [33] A. Consoli, N. Caselli, C. López. Electrically driven random lasing from a modified Fabry-Pérot laser diode. Nat. Photon., 16, 219(2022).

    [34] D. Zhu, M. Shen, H. Jiang et al. Broadband superluminescent diode-based ultrahigh resolution optical coherence tomography for ophthalmic imaging. J. Biomed. Opt., 16, 126006(2011).

    [35] O. Alkhazragi, M. Dong, L. Chen et al. Chaotic-cavity surface-emitting lasers for optical wireless communication. APL Photon., 8, 086108(2023).

    [36] R. Ma, Y. J. Rao, W. L. Zhang et al. Multimode random fiber laser for speckle-free imaging. IEEE J. Sel. Top. Quantum Electron., 25, 0900106(2019).

    [37] R. Ma, W. L. Zhang, J. Y. Guo et al. Decoherence of fiber supercontinuum light source for speckle-free imaging. Opt. Express, 26, 26758(2018).

    [38] B. Han, Q. Cheng, Y. Tao et al. Spectral manipulations of random fiber lasers: principles, characteristics, and applications. Laser Photonics Rev., 18, 2400122(2024).

    [39] R. Ma, J. Q. Li, J. Y. Guo et al. High-power low spatial coherence random fiber laser. Opt. Express, 27, 8738(2019).

    [40] Q. H. Song, L. Y. Liu, L. Xu et al. Electrical tunable random laser emission from a liquid-crystal infiltrated disordered planar microcavity. Opt. Lett., 34, 298(2009).

    [41] W. Z. W. Ismail, D. M. Liu, S. Clement et al. Spectral and coherence signatures of threshold in random lasers. J. Opt., 16, 105008(2014).

    [42] J. A. Newman, Q. E. Luo, K. J. Webb. Imaging hidden objects with spatial speckle intensity correlations over object position. Phys. Rev. Lett., 116, 073902(2016).

    [43] Y. Wan, Z. H. Li, W. Z. Wang et al. Low-spatial-coherence random lasers enhanced by TiN/Graphene self-assembly structures for high-resolution imaging in chaotic fluid environments. J. Lightwave Technol., 42, 5989(2024).

    [44] Y. Eliezer, G. Y. Qu, W. H. Yang et al. Suppressing meta-holographic artifacts by laser coherence tuning. Light Sci. Appl., 10, 104(2021).

    [45] H. Lu, O. Alkhazragi, Y. Wang et al. Low-coherence semiconductor light sources: devices and applications. npj Nanophoton., 1, 9(2024).

    Zhihao Li, Jianghao Li, Yanyan Huo, Yangjian Cai, Yuan Wan, "Dynamic coherence control of random lasers and its effect on speckle and edge sharpness of images," Chin. Opt. Lett. 23, 061404 (2025)
    Download Citation