• High Power Laser and Particle Beams
  • Vol. 34, Issue 1, 011003 (2022)
Xianqian Wu1 and Chenguang Huang2、*
Author Affiliations
  • 1Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
  • 2Hefei Insitutites of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
  • show less
    DOI: 10.11884/HPLPB202234.210326 Cite this Article
    Xianqian Wu, Chenguang Huang. Laser driven explosion and shock wave: a review[J]. High Power Laser and Particle Beams, 2022, 34(1): 011003 Copy Citation Text show less
    References

    [1] Zheng Zhemin. Explosion processing[M]. 2nd ed. Beijing: National Defense Industry Press, 1981

    [3] Sun Chengwei, Lu Qisheng, Fan Zhengxiu, et al. Laser irradiation effect[M]. Beijing: National Defense Industry Press, 2002

    [4] Wu Xianqian. Experimental theetical studies on laser shock peening of metals[D]. Beijing: University of Chinese Academy of Sciences, 2012

    [5] Askar'yan G A, Moroz E M. Pressure on evaporation of matter in a radiation beam[J]. Soviet Journal of Experimental and Theoretical Physics, 16, 1638-1639(1963).

    [6] Radziemski L J, Cremers D A. Lasersinduced plasmas applications[M]. New Yk: Marcel Dekker Inc. , 1989.

    [7] Ready J F. Effects due to absorption of laser radiation[J]. Journal of Applied Physics, 36, 462-468(1965).

    [8] White R M. Elastic wave generation by electron bombardment or electromagnetic wave absorption[J]. Journal of Applied Physics, 34, 2123-2124(1963).

    [9] Fairand B P, Wilcox B A, Gallagher W J, et al. Laser shock-induced microstructural and mechanical property changes in 7075 aluminum[J]. Journal of Applied Physics, 43, 3893-3895(1972).

    [10] Sano Y, Mukai N, Okazaki K, et al. Residual stress improvement in metal surface by underwater laser irradiation[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 121, 432-436(1997).

    [11] Fabbro R, Fournier J, Ballard P, et al. Physical study of laser-produced plasma in confined geometry[J]. Journal of Applied Physics, 68, 775-784(1990).

    [12] Hong Xin, Wang Shengbo, Guo Dahao, et al. Confining medium and absorptive overlay: their effects on a laser-induced shock wave[J]. Optics and Lasers in Engineering, 29, 447-455(1998).

    [13] Fabbro R, Peyre P, Berthe L, et al. Physics and applications of laser-shock processing[J]. Journal of Laser Applications, 10, 265-279(1998).

    [14] Peyre P, Fabbro R. Laser shock processing: a review of the physics and applications[J]. Optical and Quantum Electronics, 27, 1213-1229(1995).

    [15] Zhang Wenwu, Yao Y L, Noyan I C. Microscale laser shock peening of thin films, part 1: experiment, modeling and simulation[J]. Journal of Manufacturing Science and Engineering, 126, 10-17(2004).

    [16] Colvin J D, Ault E R, King W E, et al. Computational model for a low-temperature laser-plasma driver for shock-processing of metals and comparison to experimental data[J]. Physics of Plasmas, 10, 2940-2947(2003).

    [17] Sollier A, Berthe L, Peyre P, et al. Lasermatter interaction in laser shock processing[C]Proceedings of SPIE 4831, First International Symposium on HighPower Laser Macroprocessing. 2003: 463467.

    [18] Wu Benxin, Shin Y C. A self-closed thermal model for laser shock peening under the water confinement regime configuration and comparisons to experiments[J]. Journal of Applied Physics, 97, 113517(2005).

    [19] Wu Xianqian, Duan Zhuping, Song Hongwei, et al. Shock pressure induced by glass-confined laser shock peening: experiments, modeling and simulation[J]. Journal of Applied Physics, 110, 053112(2011).

    [21] Fournier J, Ballard P, Merrien P, et al. Mechanical effects induced by shock waves generated by high energy laser pulses[J]. Journal de Physique III, 1, 1467-1480(1991).

    [22] Peyre P, Fabbro R, Merrien P, et al. Laser shock processing of aluminium alloys. Application to high cycle fatigue behaviour[J]. Materials Science and Engineering:A, 210, 102-113(1996).

    [23] Shepard M J, Smith P R, Amer M S. Introduction of compressive residual stresses in Ti-6Al-4V simulated airfoils via laser shock processing[J]. Journal of Materials Engineering and Performance, 10, 670-678(2001).

    [24] Masse J E, Barreau G. Laser generation of stress waves in metal[J]. Surface and Coatings Technology, 70, 231-234(1995).

    [25] Hu Y X, Yao Z Q, Wang F, et al. Study on residual stress of laser shock processing based on numerical simulation and orthogonal experimental design[J]. Surface Engineering, 23, 470-478(2007).

    [26] Peyre P, Berthe L, Scherpereel X, et al. Laser-shock processing of aluminium-coated 55C1 steel in water-confinement regime, characterization and application to high-cycle fatigue behaviour[J]. Journal of Materials Science, 33, 1421-1429(1998).

    [27] Wu Xianqian, Tan Qingming, Huang Chenguang. Geometrical scaling law for laser shock processing[J]. Journal of Applied Physics, 114, 043105(2013).

    [28] Tan Qingming. Dimensional analysis[M]. Beijing: University of Science Technology of China Press, 2005

    [29] King A, Steuwer A, Woodward C, et al. Effects of fatigue and fretting on residual stresses introduced by laser shock peening[J]. Materials Science and Engineering:A, 435/436, 12-18(2006).

    [30] Zou Shikun, Gong Shuili, Guo Enming, et al. Laser peening of turbine engine integrally blade rot[J]. Chinese Journal of Lasers, 2011, 38: 0601009

    [32] Bartsch T M. High Cycle Fatigue (HCF) science technology program[R]. Technical Rept, ADA408071, 2002.

    [33] Ruschau J J, John R, Thompson S R, et al. Fatigue crack nucleation growth rate behavi of laser shock peened titanium[J]. International Journal of Fatigue, 1999, 21 Suppl 1: S199S209.

    [34] Sokol D W, Clauer A H, Dulaney J L, et al. Applications of laser peening to titanium alloys[C]Conference on Lasers ElectroOpticsQuantum Electronics Laser Science Photonic Applications, Systems Technologies. 2005: PTuB4.

    [38] Chen Lan, Ren Xudong, Zhou Wangfan, et al. Evolution of microstructure and grain refinement mechanism of pure nickel induced by laser shock peening[J]. Materials Science and Engineering:A, 728, 20-29(2018).

    [39] Hua Yinqun, Bai Yuchuan, Ye Yunxia, et al. Hot corrosion behavior of TC11 titanium alloy treated by laser shock processing[J]. Applied Surface Science, 283, 775-780(2013).

    [40] Zhao Xiangfan, He Weifeng, Zang Shunlai, et al. Effect study and application to improve high cycle fatigue resistance of TC11 titanium alloy by laser shock peening with multiple impacts[J]. Surface and Coatings Technology, 253, 68-75(2014).

    [41] Correa C, Peral D, Porro J A, et al. Random-type scanning patterns in laser shock peening without absorbing coating in 2024-T351 Al alloy: a solution to reduce residual stress anisotropy[J]. Optics & Laser Technology, 73, 179-187(2015).

    [42] Dai Fengze, Zhou Jianzhong, Lu Jinzhong, et al. A technique to decrease surface roughness in overlapping laser shock peening[J]. Applied Surface Science, 370, 501-507(2016).

    [43] Zhang X C, Zhang Y K, Lu J Z, et al. Improvement of fatigue life of Ti-6Al-4V alloy by laser shock peening[J]. Materials Science and Engineering:A, 527, 3411-3415(2010).

    [44] Correa C, de Lara L, Díaz M, et al. Effect of advancing direction on fatigue life of 316L stainless steel specimens treated by double-sided laser shock peening[J]. International Journal of Fatigue, 79, 1-9(2015).

    [47] Trdan U, Grum J. Evaluation of corrosion resistance of AA6082-T651 aluminium alloy after laser shock peening by means of cyclic polarisation and ElS methods[J]. Corrosion Science, 59, 324-333(2012).

    [48] Lu J Z, Luo K Y, Yang D K, et al. Effects of laser peening on stress corrosion cracking (SCC) of ANSI 304 austenitic stainless steel[J]. Corrosion Science, 60, 145-152(2012).

    [49] Ge Maozhong, Xiang Jianyun, Yang L. Effect of laser shock peening on the stress corrosion cracking of AZ31B magnesium alloy in a simulated body fluid[J]. Surface and Coatings Technology, 310, 157-165(2017).

    [50] Sánchez-Santana U, Rubio-González C, Gomez-Rosas G, et al. Wear and friction of 6061-T6 aluminum alloy treated by laser shock processing[J]. Wear, 260, 847-854(2006).

    [51] Lim H, Kim P, Jeong H, et al. Enhancement of abrasion and corrosion resistance of duplex stainless steel by laser shock peening[J]. Journal of Materials Processing Technology, 212, 1347-1354(2012).

    [52] Lu J Z, Luo K Y, Zhang Y K, et al. Grain refinement of LY2 aluminum alloy induced by ultra-high plastic strain during multiple laser shock processing impacts[J]. Acta Materialia, 58, 3984-3994(2010).

    [53] Luo Sihai, Nie Xiangfan, Zhou Liucheng, et al. Thermal stability of surface nanostructure produced by laser shock peening in a Ni-based superalloy[J]. Surface and Coatings Technology, 311, 337-343(2017).

    [54] Ye Chang, Suslov S, Kim B J, et al. Fatigue performance improvement in AISI 4140 steel by dynamic strain aging and dynamic precipitation during warm laser shock peening[J]. Acta Materialia, 59, 1014-1025(2011).

    [55] Tani G, Orazi L, Fortunato A, et al. Warm laser shock peening: new developments and process optimization[J]. CIRP Annals, 60, 219-222(2011).

    [56] Ye Chang, Liao Yiliang, Suslov S, et al. Ultrahigh dense and gradient nano-precipitates generated by warm laser shock peening for combination of high strength and ductility[J]. Materials Science and Engineering: A, 609, 195-203(2014).

    [57] Zhou J Z, Meng X K, Huang S, et al. Effects of warm laser peening at elevated temperature on the low-cycle fatigue behavior of Ti6Al4V alloy[J]. Materials Science and Engineering:A, 643, 86-95(2015).

    [59] Ye Chang, Suslov S, Lin Dong, et al. Deformation-induced martensite and nanotwins by cryogenic laser shock peening of AISI 304 stainless steel and the effects on mechanical properties[J]. Philosophical Magazine, 92, 1369-1389(2012).

    [60] Fu Jie, Zhu Yunhu, Zheng Chao, et al. Evaluate the effect of laser shock peening on plasticity of Zr-based bulk metallic glass[J]. Optics & Laser Technology, 73, 94-100(2015).

    [61] Liu Y, Jiang M Q, Yang G W, et al. Surface rippling on bulk metallic glass under nanosecond pulse laser ablation[J]. Applied Physics Letters, 99, 191902(2011).

    [62] Song X, Xiao K L, Wu X Q, et al. Nanoparticles produced by nanosecond pulse laser ablation of a metallic glass in water[J]. Journal of Non-Crystalline Solids, 517, 119-126(2019).

    [63] Wei Yanpeng, Xu Guangyue, Zhang Kun, et al. Anomalous shear band characteristics and extra-deep shock-affected zone in Zr-based bulk metallic glass treated with nanosecond laser peening[J]. Scientific Reports, 7, 43948(2017).

    [64] Wang Fei, Zhang Chenfei, Lu Yongfeng, et al. Laser shock processing of polycrystalline alumina ceramics[J]. Journal of the American Ceramic Society, 100, 911-919(2017).

    [65] Shukla P, Nath S, Wang Guanjun, et al. Surface property modifications of silicon carbide ceramic following laser shock peening[J]. Journal of the European Ceramic Society, 37, 3027-3038(2017).

    [66] Jiang Weifeng, Gong Xinglong, Xuan Shouhu, et al. Stress pulse attenuation in shear thickening fluid[J]. Applied Physics Letters, 102, 101901(2013).

    [67] Waitukaitis S R, Jaeger H M. Impact-activated solidification of dense suspensions via dynamic jamming fronts[J]. Nature, 487, 205-209(2012).

    [68] Barnes H A. Shear-thickening ("Dilatancy") in suspensions of nonaggregating solid particles dispersed in Newtonian liquids[J]. Journal of Rheology, 33, 329-366(1989).

    [69] Ding Jie, Tian Tongfei, Meng Qing, et al. Smart multifunctional fluids for lithium ion batteries: enhanced rate performance and intrinsic mechanical protection[J]. Scientific Reports, 3, 2485(2013).

    [70] Wu Xianqian, Zhong Fachun, Yin Qiuyun, et al. Dynamic response of shear thickening fluid under laser induced shock[J]. Applied Physics Letters, 106, 071903(2015).

    [71] Wu Xianqian, Yin Qiuyun, Huang Chenguang. Experimental study on pressure, stress state, and temperature-dependent dynamic behavior of shear thickening fluid subjected to laser induced shock[J]. Journal of Applied Physics, 118, 173102(2015).

    [72] Duerig T, Melton K, Stockel D, et al. Engineering aspects of shape memy alloys[M]. London: ButterwthHeinemann, 1990.

    [73] Liao Yiliang, Ye Chang, Lin Dong, et al. Deformation induced martensite in NiTi and its shape memory effects generated by low temperature laser shock peening[J]. Journal of Applied Physics, 112, 033515(2012).

    [74] Wang Xi, Xia Weiguang, Wu Xianqian, et al. Microstructure and mechanical properties of an austenite NiTi shape memory alloy treated with laser induced shock[J]. Materials Science and Engineering:A, 578, 1-5(2013).

    [75] Wang Xi, Xia Weiguang, Wu Xianqian, et al. In-situ investigation of dynamic deformation in NiTi shape memory alloys under laser induced shock[J]. Mechanics of Materials, 114, 69-75(2017).

    [77] Nemat-Nasser S, Choi J Y, Guo Weiguo, et al. Very high strain-rate response of a NiTi shape-memory alloy[J]. Mechanics of Materials, 37, 287-298(2005).

    [78] Xu Yunhua, Chen Yumei, Zhu Jinhua. Wear behavior and nano-structure of surface layers of Hadfield steel under impact loading[J]. Progress in Natural Science, 11, 447-453(2001).

    [79] Yin Qiuyun, Wu Xianqian, Huang Chenguang, et al. Atomistic study of temperature and strain rate-dependent phase transformation behaviour of NiTi shape memory alloy under uniaxial compression[J]. Philosophical Magazine, 95, 2491-2512(2015).

    [80] Frost H J, Ashby M F. Defmationmechanism maps: the plasticity creep of metals ceramics[M]. Oxfd: Pergamon Press, 1982.

    [81] Yin Qiuyun, Wu Xianqian, Huang Chenguang. Atomistic study on shock behaviour of NiTi shape memory alloy[J]. Philosophical Magazine, 97, 1311-1333(2017).

    [82] Zhao Xinghai, Zhao Xiang, Shan Guangcun, et al. Fiber-coupled laser-driven flyer plates system[J]. Review of Scientific Instruments, 82, 043904(2011).

    [83] Veysset D, Lee J H, Hassani M, et al. High-velocity micro-projectile impact testing[J]. Applied Physics Review, 8, 011319(2021).

    [84] Dean S W, De Lucia F C, Gottfried J L. Indirect ignition of energetic materials with laser-driven flyer plates[J]. Applied Optics, 56, B134-B141(2017).

    [85] Curtis A D, Banishev A A, Shaw W L, et al. Laser-driven flyer plates for shock compression science: launch and target impact probed by photon Doppler velocimetry[J]. Review of Scientific Instruments, 85, 043908(2014).

    [86] Watson S, Field J E. Measurement of the ablated thickness of films in the launch of laser-driven flyer plates[J]. Journal of Physics D:Applied Physics, 33, 170-174(2000).

    [87] Brown K E, Shaw W L, Zheng Xianxu, et al. Simplified laser-driven flyer plates for shock compression science[J]. Review of Scientific Instruments, 83, 103901(2012).

    [88] Veysset D, Hsieh A J, Kooi S, et al. Dynamics of supersonic microparticle impact on elastomers revealed by real-time multi-frame imaging[J]. Scientific Reports, 6, 25577(2016).

    [89] Lee J H, Loya P E, Lou Jun, et al. Dynamic mechanical behavior of multilayer graphene via supersonic projectile penetration[J]. Science, 346, 1092-1096(2014).

    [90] Xie Wanting, Alizadeh-Dehkharghani A, Chen Qiyong, et al. Dynamics and extreme plasticity of metallic microparticles in supersonic collisions[J]. Scientific Reports, 7, 5073(2017).

    [91] Xiao Kailu, Wu Xianqian, Song Xuan, et al. Study on performance degradation and damage modes of thin-film photovoltaic cell subjected to particle impact[J]. Scientific Reports, 11, 782(2021).

    [92] Dong J L, Song X, Wang Z J, et al. Impact resistance of single-layer metallic glass nanofilms to high-velocity micro-particle penetration[J]. Extreme Mechanics Letters, 44, 101258(2021).

    [93] Xiao Kailu, Wu Xianqian, Wu Chenwu, et al. Residual stress analysis of thin film photovoltaic cells subjected to massive micro-particle impact[J]. RSC Advances, 10, 13470-13479(2020).

    [94] Xiao Kailu, Lei Xudong, Chen Yuyu, et al. Extraordinary impact resistance of carbon nanotube film with crosslinks under micro-ballistic impact[J]. Carbon, 175, 478-489(2021).

    [95] Hyon J, Lawal O, Thevamaran R, et al. Extreme energy dissipation via material evolution in carbon nanotube mats[J]. Advanced Science, 8, 2003142(2021).

    [96] Wang Chao, Xie Bo, Liu Yilun, et al. Mechanotunable microstructures of carbon nanotube networks[J]. ACS Macro Letters, 1, 1176-1179(2012).

    [97] Satti A, Perret A, McCarthy J E, et al. Covalent crosslinking of single-walled carbon nanotubes with poly(allylamine) to produce mechanically robust composites[J]. Journal of Materials Chemistry, 20, 7941-7943(2010).

    [98] Xie Wanting, Lee J H. Dynamics of entangled networks in ultrafast perforation of polystyrene nanomembranes[J]. Macromolecules, 53, 1701-1705(2020).

    [99] Chan E P, Xie Wanting, Orski S V, et al. Entanglement density-dependent energy absorption of polycarbonate films via supersonic fracture[J]. ACS Macro Letters, 8, 806-811(2019).

    [100] Lee J H, Veysset D, Singer J P, et al. High strain rate deformation of layered nanocomposites[J]. Nature Communications, 3, 1164(2012).

    [101] Cai Jizhe, Thevamaran R. Superior energy dissipation by ultrathin semicrystalline polymer films under supersonic microprojectile impacts[J]. Nano Letters, 20, 5632-5638(2020).

    [102] Hassani-Gangaraj M, Veysset D, Nelson K A, et al. In-situ observations of single micro-particle impact bonding[J]. Scripta Materialia, 145, 9-13(2018).

    [103] Hassani-Gangaraj M, Veysset D, Champagne V K, et al. Adiabatic shear instability is not necessary for adhesion in cold spray[J]. Acta Materialia, 158, 430-439(2018).

    [104] Hassani M, Veysset D, Nelson K A, et al. Material hardness at strain rates beyond 106 s−1 via high velocity microparticle impact indentation[J]. Scripta Materialia, 177, 198-202(2020).

    [105] Hassani-Gangaraj M, Veysset D, Nelson K A, et al. Melt-driven erosion in microparticle impact[J]. Nature Communications, 9, 5077(2018).

    Xianqian Wu, Chenguang Huang. Laser driven explosion and shock wave: a review[J]. High Power Laser and Particle Beams, 2022, 34(1): 011003
    Download Citation