[1] G Zichittella, J Pérez-Ramírez. Status and prospects of the decentralised valorisation of natural gas into energy and energy carriers. Chemical Society Reviews, 50, 2984-3012(2021).
[2] C Y Chuah, H J Lee, T H Bae. Recent advances of nanoporous adsorbents for light hydrocarbon (C1–C3) separation. Chemical Engineering Journal, 430, 132654(2022).
[3] L F Lei, A Lindbråthen, X P Zhang et al. Preparation of carbon molecular sieve membranes with remarkable CO2/CH4 selectivity for high-pressure natural gas sweetening. Journal of Membrane Science, 614, 118529(2020).
[4] M Ding, R W Flaig, H L Jiang et al. Carbon capture and conversion using metal-organic frameworks and MOF-based materials. Chem Soc Rev, 48, 2783-2828(2019).
[5] H Wang, X L Dong, J Z Lin et al. Topologically guided tuning of Zr-MOF pore structures for highly selective separation of C6 alkane isomers. Nature Communications, 9, 1745(2018).
[6] K Xie, Q Fu, C L Xu et al. Continuous assembly of a polymer on a metal–organic framework (CAP on MOF): a 30 nm thick polymeric gas separation membrane. Energy & Environmental Science, 11, 544-550(2018).
[7] J X Wang, C C Liang, X W Gu et al. Recent advances in microporous metal–organic frameworks as promising adsorbents for gas separation. Journal of Materials Chemistry A, 10, 17878-17916(2022).
[8] W G Cui, T L Hu, X H Bu. Metal-organic framework materials for the separation and purification of light hydrocarbons. Advanced Materials, 32, e1806445(2020).
[9] S Q Yang, T L Hu. Reverse-selective metal–organic framework materials for the efficient separation and purification of light hydrocarbons. Coordination Chemistry Reviews, 468, 214628(2022).
[10] H L Li, M Eddaoudi, M O’Keeffe et al. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature, 402, 276-279(1999).
[11] S B Geng, E Lin, X Li et al. Scalable room-temperature synthesis of highly robust ethane-selective metal-organic frameworks for efficient ethylene purification. Journal of the American Chemical Society, 143, 8654-8660(2021).
[12] Y S Li, H Bux, A Feldhoff et al. Controllable synthesis of metal-organic frameworks: from MOF nanorods to oriented MOF membranes. Advanced Materials, 22, 3322-3326(2010).
[13] T Chen, D Zhao. Post-synthetic modification of metal-organic framework-based membranes for enhanced molecular separations. Coordination Chemistry Reviews, 491, 215259(2023).
[14] Y Y Zhang, X Feng, H W Li et al. Photoinduced postsynthetic polymerization of a metal-organic framework toward a flexible stand-alone membrane. Angewandte Chemie (International Ed), 54, 4259-4263(2015).
[15] D N Dybtsev, H Chun, K Kim. Rigid and flexible: a highly porous metal-organic framework with unusual guest-dependent dynamic behavior. Angewandte Chemie (International Ed), 43, 5033-5036(2004).
[16] X Wang, Z W Liu, J Yan et al. High-pressure separation performance of Ni(TMBDC)(DABCO)0.5 featured low-polarity channel for CH4/N2 mixture. Separation and Purification Technology, 335, 126019(2024).
[17] C Wu, S Sircar. Comments on binary and ternary gas adsorption selectivity. Separation and Purification Technology, 170, 453-461(2016).
[18] C M Simon, B Smit, M Haranczyk. pyIAST: Ideal adsorbed solution theory (IAST) Python package. Computer Physics Communications, 200, 364-380(2016).
[19] Z W Xu, Y Y Zhang, X M Qian et al. One step synthesis of polyacrylamide functionalized graphene and its application in Pb(II) removal. Applied Surface Science, 316, 308-314(2014).
[20] T Zhu, K Y Teng, J Shi et al. A facile assembly of 3D robust double network graphene/polyacrylamide architectures via γ-ray irradiation. Composites Science and Technology, 123, 276-285(2016).
[21] Y Kim, R Haldar, H Kim et al. The guest-dependent thermal response of the flexible MOF Zn2(BDC)2(DABCO). Dalton Transactions, 45, 4187-4192(2016).
[22] L Yan, H T Zheng, L Song et al. Microporous fluorinated MOF with multiple adsorption sites for efficient recovery of C2H6 and C3H8 from natural gas. ACS Applied Materials & Interfaces, 16, 6579-6588(2024).
[23] X P Zhang, C Gao, L Z Li et al. Fe based MOF encapsulating triethylenediamine cobalt complex to prepare a FeN3-CoN3 dual-atom catalyst for efficient ORR in Zn-air batteries. Journal of Colloid and Interface Science, 676, 871-883(2024).
[24] V Krungleviciute, S Pramanik, A D Migone et al. Methane on Zn(bdc)(ted)0.5 metal–organic framework: evidence for adsorption on distinct sites. Microporous and Mesoporous Materials, 161, 134-138(2012).
[25] T H Kim, S Y Kim, T U Yoon et al. Improved methane/nitrogen separation properties of zirconium-based metal–organic framework by incorporating highly polarizable bromine atoms. Chemical Engineering Journal, 399, 125717(2020).
[26] L B Li, Y F Duan, S W Liao et al. Adsorption and separation of propane/propylene on various ZIF-8 polymorphs: insights from GCMC simulations and the ideal adsorbed solution theory (IAST). Chemical Engineering Journal, 386, 123945(2020).
[27] F Xu, Y L Wu, J Wu et al. A microporous zn(bdc)(ted)0.5 with super high ethane uptake for efficient selective adsorption and separation of light hydrocarbons. Molecules, 28, 6000(2023).
[28] Tong LI. Study on efficient separation of methane/nitrogen under humid conditions based on DMOF material(2022).
[29] Jian GAO, Meihua LIU, Wei WEI et al. Preparation of large-size UiO-66-S films based on radiation grafted substrates and its mercury ion-removal performance in artificial plasma. Journal of Radiation Research and Radiation Processing, 38, 030203(2020).
[30] Shuaichuan CUI, Ziqi DENG, Yifan HUANG et al. High-performance ZIF-8 membranes: preparation and their uranium adsorption performance. Journal of Radiation Research and Radiation Processing, 42, 050202(2024).