• Optics and Precision Engineering
  • Vol. 31, Issue 21, 3221 (2023)
Jing LIU1,*, Yang LI1, and Yi LIU2
Author Affiliations
  • 1School of Electronic Engineering, Xi’an University of Posts and Telecommunications, Xi'an702, China
  • 2School of Electronic Engineering, Xidian University, Xi'an710071, China
  • show less
    DOI: 10.37188/OPE.20233121.3221 Cite this Article
    Jing LIU, Yang LI, Yi LIU. Hyperspectral images feature extraction and classification based on fractional differentiation[J]. Optics and Precision Engineering, 2023, 31(21): 3221 Copy Citation Text show less
    References

    [1] 刘敬, 李青妍, 刘逸. 基于核加权类对准则的高光谱影像特征提取[J]. 光学 精密工程, 2021, 29(6):1397-1405. doi: 10.37188/OPE.20212906.1397LIUJ, LIQ Y, LIUY. Spectral feature extraction of hyperspectral remote sensing images based on kernel class pair-weighted criterion[J]. Opt. Precision Eng., 2021, 29(6):1397-1405.(in Chinese). doi: 10.37188/OPE.20212906.1397

    [2] 邵文静, 孙伟伟, 杨刚. 高光谱遥感影像纹理特征提取的对比分析[J]. 遥感技术与应用, 2021, 36(2): 431-440. doi: 10.11873/j.issn.1004-0323.2021.2.0431SHAOW J, SUNW W, YANGG. Comparison of texture feature extraction methods for hyperspectral imagery classification[J]. Remote Sensing Technology and Application, 2021, 36(2): 431-440.(in Chinese). doi: 10.11873/j.issn.1004-0323.2021.2.0431

    [3] 闫敬文, 陈宏达, 刘蕾. 高光谱图像分类的研究进展[J]. 光学 精密工程,2019,27(3): 680-693. doi: 10.3788/ope.20192703.0680YANJ W, CHENH D, LIUL. Overview of hyperspectral image classification[J]. Opt. Precision Eng., 2019, 27(3): 680-693.(in chinese). doi: 10.3788/ope.20192703.0680

    [4] 陈静, 张静. 改进高斯过程回归的高光谱空谱联合分类算法[J]. 光学 精密工程, 2019, 27(7):1649-1660. doi: 10.3788/ope.20192707.1649CHENJ, ZHANGJ. Spectral-spatial joint classification of hyperspectral image algorithm based on improved Gaussian process regression[J]. Opt. Precision Eng., 2019, 27(7):1649-1660.(in Chinese). doi: 10.3788/ope.20192707.1649

    [5] 方帅, 张坤, 张晶, 等. 增强类可分性的高光谱图像分类[J]. 中国图象图形学报, 2021, 26(8):1940-1951. doi: 10.11834/jig.210029FANGSH, ZHANGK, ZHANGJ, et al. Hyperspectral image classification with enhanced class separability[J]. Journal of Image and Graphics, 2021, 26(8):1940-1951.(in Chinese). doi: 10.11834/jig.210029

    [6] G LICCIARDI, P R MARPU, J CHANUSSOT et al. Linear versus nonlinear PCA for the classification of hyperspectral data based on the extended morphological profiles. IEEE Geoscience and Remote Sensing Letters, 9, 447-451(2012).

    [7] T V BANDOS, L BRUZZONE, G CAMPS-VALLS. Classification of hyperspectral images with regularized linear discriminant analysis. IEEE Transactions on Geoscience and Remote Sensing, 47, 862-873(2009).

    [8] M M ZHANG, W LI, Q DU. Diverse region-based CNN for hyperspectral image classification. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 27, 2623-2634(2018).

    [9] W LI, C CHEN, M M ZHANG et al. Data augmentation for hyperspectral image classification with deep CNN. IEEE Geoscience and Remote Sensing Letters, 16, 593-597(2019).

    [10] S JIA, B DENG, J S ZHU et al. Local binary pattern-based hyperspectral image classification with superpixel guidance. IEEE Transactions on Geoscience and Remote Sensing, 56, 749-759(2018).

    [11] C CRUZ-RAMOS, B P GARCIA-SALGADO, R REYES-REYES et al. Gabor features extraction and land-cover classification of urban hyperspectral images for remote sensing applications. Remote Sensing, 13, 2914(2021).

    [12] L F WEI, K WANG, Q K LU et al. Crops fine classification in airborne hyperspectral imagery based on multi-feature fusion and deep learning. Remote Sensing, 13, 2917(2021).

    [13] Y L GUO, Q S BI, Y LI et al. Sparse representing denoising of hyperspectral data for water color remote sensing. Applied Sciences, 12, 7501(2022).

    [14] 闫汇聪, 刘德山, 陈浪, 等. 散度核协同表示与空谱融合特征的高光谱图像分类算法[J]. 计算机应用与软件, 2023, 40(2): 287-295. doi: 10.3969/j.issn.1000-386x.2023.02.045YANH C, LIUD SH, CHENL, et al. A hyperspectral image classification algorithm based on divergence kernel collaborative representation and spatial-spectral fusion feature[J]. Computer Applications and Software, 2023, 40(2): 287-295.(in Chinese). doi: 10.3969/j.issn.1000-386x.2023.02.045

    [15] M FAUVEL, Y TARABALKA, J A BENEDIKTSSON et al. Advances in spectral-spatial classification of hyperspectral images. Proceedings of the IEEE, 101, 652-675(2013).

    [16] Q B HU, W X XU, X B LIU et al. Hyperspectral image classification based on bilateral filter with multispatial domain. IEEE Geoscience and Remote Sensing Letters, 19, 1-5(2022).

    [17] W W SUN, K LIU, G B REN et al. A simple and effective spectral-spatial method for mapping large-scale coastal wetlands using China ZY1-02D satellite hyperspectral images. International Journal of Applied Earth Observation and Geoinformation, 104, 102572(2021).

    [18] Y YUAN, X C MENG, W W SUN et al. Multi-resolution collaborative fusion of SAR, multispectral and hyperspectral images for coastal wetlands mapping. Remote Sensing, 14, 3492(2022).

    [19] Y S CHEN, Z H LIN, X ZHAO et al. Deep learning-based classification of hyperspectral data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7, 2094-2107(2014).

    [20] Y S CHEN, X ZHAO, X P JIA. Spectral-spatial classification of hyperspectral data based on deep belief network. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8, 2381-2392(2015).

    [21] W HU, Y Y HUANG, L WEI et al. Deep convolutional neural networks for hyperspectral image classification. Journal of Sensors, 2015, 1-12(2015).

    [22] T ALIPOURFARD, H AREFI, S MAHMOUDI. A novel deep learning framework by combination of subspace-based feature extraction and convolutional neural networks for hyperspectral images classification, 4780-4783(27).

    [23] Y S CHEN, H L JIANG, C Y LI et al. Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. IEEE Transactions on Geoscience and Remote Sensing, 54, 6232-6251(2016).

    [24] K LIU, W W SUN, Y J SHAO et al. Mapping coastal wetlands using transformer in transformer deep network on China ZY1-02D hyperspectral satellite images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 15, 3891-3903(2022).

    [25] S K ROY, G KRISHNA, S R DUBEY et al. HybridSN: exploring 3-D-2-D CNN feature hierarchy for hyperspectral image classification. IEEE Geoscience and Remote Sensing Letters, 17, 277-281(2020).

    [26] 蒲亦非, 袁晓, 廖科, 等. 现代信号分析与处理中分数阶微积分的五种数值实现算法[J]. 四川大学学报(工程科学版), 2005, 37(5):118-124. doi: 10.3969/j.issn.1009-3087.2005.05.024PUY F, YUANX, LIAOK, et al. Five numerical algorithms of fractional calculus applied in modern signal analyzing and processing[J]. Journal of Sichuan University (Engineering Science Edition), 2005, 37(5):118-124.(in Chinese). doi: 10.3969/j.issn.1009-3087.2005.05.024

    [27] 陈晓冬, 吉佳瑞, 盛婧, 等. 分数阶微分加权引导滤波对超声图像的纹理保持[J]. 光学 精密工程, 2020, 28(1): 174-181. doi: 10.3788/ope.20202801.0174CHENX D, JIJ R, SHENGJ, et al. Fractional differential weighted guided filtering for image texture preservation for medical ultrasound[J]. Opt. Precision Eng., 2020, 28(1): 174-181.(in Chinese). doi: 10.3788/ope.20202801.0174

    [28] B MATHIEU, P MELCHIOR, A OUSTALOUP et al. Fractional differentiation for edge detection. Signal Processing, 83, 2421-2432(2003).

    [29] 杨柱中, 周激流, 黄梅, 等. 基于分数阶微分的边缘检测[J]. 四川大学学报(工程科学版), 2008, 40(1):152-157.YANGZH ZH, ZHOUJ L, HUANGM, et al. Edge detection based on fractional differential[J]. Journal of Sichuan University (Engineering Science Edition), 2008, 40(1):152-157.(in Chinese)

    Jing LIU, Yang LI, Yi LIU. Hyperspectral images feature extraction and classification based on fractional differentiation[J]. Optics and Precision Engineering, 2023, 31(21): 3221
    Download Citation