• Frontiers of Optoelectronics
  • Vol. 13, Issue 2, 149 (2020)
Xiaohui LI1、*, Jiajun PENG1, Ruisheng LIU1、2, Jishu LIU1, Tianci FENG1, Abdul Qyyum1, Cunxiao GAO2, Mingyuan XUE2, and Jian ZHANG2
Author Affiliations
  • 1College of Physics and Information Technology, Shaanxi Normal University, Xi’an 710119, China
  • 2State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710119, China
  • show less
    DOI: 10.1007/s12200-020-1057-4 Cite this Article
    Xiaohui LI, Jiajun PENG, Ruisheng LIU, Jishu LIU, Tianci FENG, Abdul Qyyum, Cunxiao GAO, Mingyuan XUE, Jian ZHANG. Fe3O4 nanoparticle-enabled mode-locking in an erbiumdoped fiber laser[J]. Frontiers of Optoelectronics, 2020, 13(2): 149 Copy Citation Text show less
    References

    [1] Oktem B, ülgüdür C, Ilday F ?. Soliton–similariton fibre laser. Nature Photonics, 2010, 4(5): 307–311

    [2] Kobtsev S, Kukarin S, Smirnov S, Turitsyn S, Latkin A. Generation of double-scale femto/pico-second optical lumps in mode-locked fiber lasers. Optics Express, 2009, 17(23): 20707–20713

    [3] Tang M, Tian X, Shum P, Fu S, Dong H, Gong Y. Four-wave mixing assisted self-stable 4 ′10 GHz actively mode-locked erbium fiber ring laser. Optics Express, 2006, 14(5): 1726–1730

    [4] Liu J S, Li X H, Guo Y X, Qyyum A, Shi Z J, Feng T C, Zhang Y, Jiang C X, Liu X F. SnSe2 nanosheets for subpicosecond harmonic mode-locked pulse generation. Small, 2019, 15(38): 1902811

    [5] Greer E J, Smith K. All-optical FM mode-locking of fibre laser. Electronics Letters, 1992, 28(18): 1741

    [6] Cundiff S, Collings B, Knox W. Polarization locking in an isotropic, modelocked soliton Er/Yb fiber laser. Optics Express, 1997, 1(1): 12–21

    [7] Collings B C, Bergman K, Knox W H. Stable multigigahertz pulsetrain formation in a short-cavity passively harmonic mode-locked erbium/ytterbium fiber laser. Optics Letters, 1998, 23(2): 123–125

    [8] Moenster M, Glas P, Steinmeyer G, Iliew R, Lebedev N, Wedell R, Bretschneider M. Femtosecond Neodymium-doped microstructure fiber laser. Optics Express, 2005, 13(21): 8671–8677

    [9] Wu K, Chen B, Zhang X, Zhang S, Guo C, Li C, Xiao P, Wang J, Zhou L, Zou W, Chen J. High-performance mode-locked and Qswitched fiber lasers based on novel 2D materials of topological insulators, transition metal dichalcogenides and black phosphorus: review and perspective. Optics Communications, 2018, 406: 214– 229

    [10] Yang T, Lin H, Jia B. Two-dimensional material functional devices enabled by direct laser fabrication. Frontiers of Optoelectronics, 2018, 11(1): 2–22

    [11] Choi S, Jeong H, Hong B, Rotermund F, Yeom D. All-fiber dissipative soliton laser with 10.2 nJ pulse energy using an evanescent field interaction with graphene saturable absorber. Laser Physics Letters, 2014, 11(1): 015101

    [12] Liu X, Cui Y, Han D, Yao X, Sun Z. Distributed ultrafast fibre laser. Scientific Reports, 2015, 5(1): 9101

    [13] Haiml M, Grange R, Keller U. Optical characterization of semiconductor saturable absorbers. Applied Physics B, Lasers and Optics, 2004, 79(3): 331–339

    [14] Yamashita S, Inoue Y, Maruyama S, Murakami Y, Yaguchi H, Jablonski M, Set S Y. Saturable absorbers incorporating carbon nanotubes directly synthesized onto substrates and fibers and their application to mode-locked fiber lasers. Optics Letters, 2004, 29 (14): 1581–1583

    [15] Liu H H, Chow K K. Dark pulse generation in fiber lasers incorporating carbon nanotubes. Optics Express, 2014, 22(24): 29708–29713

    [16] Xin W, Liu Z B, Sheng QW, Feng M, Huang L G,Wang P, JiangW S, Xing F, Liu Y G, Tian J G. Flexible graphene saturable absorber on two-layer structure for tunable mode-locked soliton fiber laser. Optics Express, 2014, 22(9): 10239–10247

    [17] Li D D, Zhu J W, Jiang M, Li D, Wu H, Han J, Sun Z P, Ren Z Y. Active-passive Q-switched fiber laser based on graphene microfiber. Applied Physics. B, Lasers and Optics, 2019, 125(11): 203

    [18] Wang Y R, Zhang B T, Yang H, Hou J, Su X C, Sun Z P, He J L. Passively mode-locked solid-state laser with absorption tunable graphene saturable absorber mirror. Journal of Lightwave Technology, 2019, 37(13): 2927–2931

    [19] Chai T, Li X, Feng T, Guo P, Song Y, Chen Y, Zhang H. Few-layer bismuthene for ultrashort pulse generation in a dissipative system based on an evanescent field. Nanoscale, 2018, 10(37): 17617– 17622

    [20] Yan P, Lin R, Ruan S, Liu A, Chen H, Zheng Y, Chen S, Guo C, Hu J. A practical topological insulator saturable absorber for modelocked fiber laser. Scientific Reports, 2015, 5(1): 8690

    [21] Mao D, Jiang B, Gan X, Ma C, Chen Y, Zhao C, Zhang H, Zheng J, Zhao J. Soliton fiber laser mode locked with two types of film-based Bi2Te3 saturable absorbers. Photonics Research, 2015, 3(2): A43 22.

    [22] Zhang Y, Li X, Qyyum A, Feng T, Guo P, Jiang J, Zheng H. PbS nanoparticles for ultrashort pulse generation in optical communication region. Particle & Particle Systems Characterization, 2018, 35 (11): 1800341

    [23] Hui Z, Xu W, Li X, Guo P, Zhang Y, Liu J. Cu2S nanosheets for ultrashort pulse generation in the near-infrared region. Nanoscale, 2019, 11(13): 6045–6051

    [24] Wu M, Li X, Wu K, Wu D, Dai S, Xu T, Nie Q. All-fiber 2 μm thulium-doped mode-locked fiber laser based on MoS2-saturable absorber. Optical Fiber Technology, 2019, 47: 152–157

    [25] Liu W, Pang L, Han H, Bi K, Lei M,Wei Z. Tungsten disulphide for ultrashort pulse generation in all-fiber lasers. Nanoscale, 2017, 9 (18): 5806–5811

    [26] Woodward R I, Howe R C T, Hu G, Torrisi F, Zhang M, Hasan T, Kelleher E J R. Few-layer MoS2-saturable absorbers for short-pulse laser technology: current status and future perspectives. Photonics Research, 2015, 3(2): A30

    [27] Feng J, Li X, Shi Z, Zheng C, Li X, Leng D, Wang Y, Liu J, Zhu L. 2D ductile transition metal chalcogenides (TMCs): novel highperformance Ag2S nanosheets for ultrafast photonics. Advanced Optical Materials, 2019: 1901762

    [28] Kong L, Qin Z, Xie G, Guo Z, Zhang H, Yuan P, Qian L. Black phosphorus as broadband saturable absorber for pulsed lasers from 1 μm to 2.7 μm wavelength. Laser Physics Letters, 2016, 13(4): 045801

    [29] Wei R, Wang M, Zhu Z, Lai W, Yan P, Ruan S, Wang J, Sun Z, Hasan T. High-power femtosecond pulse generation from an allfiber Er-doped chirped pulse amplification system. IEEE Photonics Journal, 2020, 12(2): 3200208

    [30] Zhao C, Zhang H, Qi X, Chen Y, Wang Z, Wen S C, Tang D Y. Ultra-short pulse generation by a topological insulator based saturable absorber. Applied Physics Letters, 2012, 101(21): 211106

    [31] Fang J, Yang Z, long S, Wu Z, Zhao X, Liang F, Jiang Z, Chen Z. High-speed indoor navigation system based on visible light and mobile phone. IEEE Photonics Journal, 2017, 9(2): 8200711

    [32] Mao D, Cui X, Zhang W, Li M, Feng T, Du B, Lu H, Zhao J. Qswitched fiber laser based on saturable absorption of ferroferricoxide nanoparticles. Photonics Research, 2017, 5(1): 52

    [33] Bai X, Mou C, Xu L, Wang S, Pu S, Zeng X. Passively Q-switched erbium-doped fiber laser using Fe3O4-nanoparticle saturable absorber. Applied Physics Express, 2016, 9(4): 042701

    [34] Chan C T. Photonic crystals and topological photonics. Frontiers of Optoelectronics, 2020, 13(1): 2–3

    [35] Li H, Ma B. Research development on fabrication and optical properties of nonlinear photonic crystals. Frontiers of Optoelectronics, 2020, 13(1): 35–49

    [36] Xing G, Jiang J, Ying J Y, Ji W. Fe3O4-Ag nanocomposites for optical limiting: broad temporal response and low threshold. Optics Express, 2010, 18(6): 6183–6190

    [37] Li N, Jia H, Liu J X, Cui L H, Jia Z X, Kang Z, Qin G S, Qin W P. Fe3O4 nanoparticles as the saturable absorber for a mode-locked fiber laser at 1558 nm. Laser Physics Letters, 2019, 16(6): 065102

    [38] Yang J, Hu J, Luo H, Li J, Liu J, Li X, Liu Y. Fe3O4 nanoparticles as a saturable absorber for a tunable Q-switched dysprosium laser around 3 μm. Photonics Research, 2020, 8(1): 70–77

    [39] Liu J S, Li X H, Qyyum A, Guo Y X, Chai T, Xu H, Jiang J. Fe3O4 nanoparticles as a saturable absorber for giant chirped pulse generation. Beilstein Journal of Nanotechnology, 2019, 10: 1065– 1072

    [40] El-Diasty F, El-Sayed H M, El-Hosiny F I, Ismail M I M. Complex susceptibility analysis of magneto-fluids: optical band gap and surface studies on the nanomagnetite-based particles. Current Opinion in Solid State and Materials Science, 2009, 13(1–2): 28–34

    [41] Tang D Y, Zhao L M, Zhao B, Liu A Q. Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers. Physical Review A, 2005, 72(4): 043816

    [42] Guo B, Yao Y, Tian J J, Zhao Y F, Liu S, Li M, Quan M R. Observation of bright-dark soliton pair in a fiber laser with topological insulator. IEEE Photonics Technology Letters, 2015, 27(7): 701–704

    [43] Zhang H, Tang D, Zhao L, Wu X. Dual-wavelength domain wall solitons in a fiber ring laser. Optics Express, 2011, 19(4): 3525–3530

    [44] Li X, Liu X, Hu X, Wang L, Lu H, Wang Y, Zhao W. Long-cavity passively mode-locked fiber ring laser with high-energy rectangularshape pulses in anomalous dispersion regime. Optics Letters, 2010, 35(19): 3249–3251

    [45] Chang W, Ankiewicz A, Soto-Crespo J M, Akhmediev N. Dissipative soliton resonances in laser models with parameter management. Journal of Applied Physics, 2008, 25(12): 1972

    [46] Wang X, Xia Q, Gu B A. A 1.9 μm noise-like mode-locked fiber laser based on compact figure-9 resonator. Optics Communications, 2019, 434: 180–183

    [47] Bravo-Huerta E, Durán-Sánchez M, álvarez-Tamayo R I, Santiago- Hernández H, Bello-Jiménez M, Posada-Ramírez B, Ibarra- Escamilla B, Pottiez O, Kuzin E A. Single and dual-wavelength noise-like pulses with different shapes in a double-clad Er/Yb fiber laser. Optics Express, 2019, 27(9): 12349–12359

    [48] Wang S K, Ning Q Y, Luo A P, Lin Z B, Luo Z C, Xu W C. Dissipative soliton resonance in a passively mode-locked figureeight fiber laser. Optics Express, 2013, 21(2): 2402–2407

    [49] Luo Z C, Cao W J, Lin Z B, Cai Z R, Luo A P, Xu W C. Pulse dynamics of dissipative soliton resonance with large duration-tuning range in a fiber ring laser. Optics letters, 2012, 37(22): 4777–4779

    [50] Liu L, Liao J H, Ning Q Y, YuW, Luo A P, Xu S H, Luo Z C, Yang Z M, Xu W C. Wave-breaking-free pulse in an all-fiber normaldispersion Yb-doped fiber laser under dissipative soliton resonance condition. Optics Express, 2013, 21(22): 27087–27092

    [51] Li X, Wang Y, Zhao W, Liu X, Wang Y, Tsang Y H, Zhang W, Hu X, Yang Z, Gao C, Li C, Shen D. All-fiber dissipative solitons evolution in a compact passively Yb-doped mode-locked fiber laser. Journal of Lightwave Technology, 2012, 30(15): 2502–2507

    [52] Jeong Y, Vazquez-Zuniga L A, Lee S, Kwon Y. On the formation of noise-like pulses in fiber ring cavity configurations. Optical Fiber Technology, 2014, 20(6): 575–592

    [53] Li X, Wang Y, Zhang W, Zhao W. Experimental observation of soliton molecules evolution in Yb-doped passively mode locked fiber lasers. Laser Physics Letters, 2014, 11(7): 075103

    CLP Journals

    [1] Jincheng Wei, Peng Li, Linpeng Yu, Shuangchen Ruan, Keyi Li, Peiguang Yan, Jiachen Wang, Jinzhang Wang, Chunyu Guo, Wenjun Liu, Ping Hua, Qitao Lü. Mode-locked fiber laser of 3.5 µm using a single-walled carbon nanotube saturable absorber mirror[J]. Chinese Optics Letters, 2022, 20(1): 011404

    Xiaohui LI, Jiajun PENG, Ruisheng LIU, Jishu LIU, Tianci FENG, Abdul Qyyum, Cunxiao GAO, Mingyuan XUE, Jian ZHANG. Fe3O4 nanoparticle-enabled mode-locking in an erbiumdoped fiber laser[J]. Frontiers of Optoelectronics, 2020, 13(2): 149
    Download Citation