• PhotoniX
  • Vol. 4, Issue 1, 36 (2023)
Jinhwa Gene1, Seung Kwan Kim2, Sun Lim2、*, and Min Yong Jeon3、4、**
Author Affiliations
  • 1Artificial Intelligence Research Laboratory, Electronics and Telecommunications Research Institute, Daejeon 34129, Republic of Korea
  • 2Division of Physical Metrology, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
  • 3Institute of Quantum Systems (IQS), Chungnam National University, Daejeon 34134, Republic of Korea
  • 4Department of Physics, College of Natural Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
  • show less
    DOI: 10.1186/s43074-023-00112-5 Cite this Article
    Jinhwa Gene, Seung Kwan Kim, Sun Lim, Min Yong Jeon. Ultrafast dissipative soliton generation in anomalous dispersion achieving high peak power beyond the limitation of cubic nonlinearity[J]. PhotoniX, 2023, 4(1): 36 Copy Citation Text show less
    References

    [1] Shi H, et al. Review of low timing jitter mode-locked fiber lasers and applications in dual-comb absolute distance measurement. Nanotechnol Precis Eng. 2018;1:205–17.

    [2] Jang Y-S, Kim S-W. Distance measurements using mode-locked lasers: a review. Nanomanuf Metrol. 2018;1:131–47.

    [3] Vyhlídal D, Jelínek M, Čech M, Kubeček V. Performance evaluation of fast, high precision laser rangefinder electronics with a pulsed laser. Proc Spie. 2011;8306:83060D-1–7.

    [4] Lee J, Kim Y-J, Lee K, Lee S, Kim S-W. Time-of-flight measurement with femtosecond light pulses. Nat Photonics. 2010;4:716–20.

    [5] Soltanian R, Long P, Goher QS, Légaré F. All-fiber sub-20 ps ultra low repetition rate high peak power mode-locked fiber laser to generate supercontinuum. Laser Phys Lett. 2020;17:025104.

    [6] Alani IAM, Lokman MQ, Ahmed MHM, Al-Masoodi AHH, Latiff AA, Harun SW. A few-picosecond and high-peak-power passively mode-locked erbium-doped fibre laser based on zinc oxide polyvinyl alcohol film saturable absorber. Laser Phys. 2018;28:075105.

    [7] Rudy CW, Digonnet MJF, Byer RL. Advances in 2-μm Tm-doped mode-locked fiber lasers. Opt Fiber Technol. 2014;20:642–9.

    [8] Cai J-H, Chen S-P, Hou J. 11-kW peak-power dissipative soliton resonance in a mode-locked Yb-fiber laser. IEEE Photonics Technol Lett. 2017;29:2191–4.

    [9] Bale BG, Boscolo S, Kutz JN, Turitsyn SK. Intracavity dynamics in high-power mode-locked fiber lasers. Phys Rev A. 2010;81:033828.

    [10] Li J, et al. All-fiber passively mode-locked Tm-doped NOLM-based oscillator operating at 2-μm in both soliton and noisy-pulse regimes. Opt Express. 2014;22:7875–82.

    [11] Wang X, Zhou P, Wang X, Xiao H, Liu Z. Pulse bundles and passive harmonic mode-locked pulses in Tm-doped fiber laser based on nonlinear polarization rotation. Opt Express. 2014;22:6147–53.

    [12] Smirnov S, Kobtsev S, Kukarin S, Ivanenko A. Three key regimes of single pulse generation per round trip of all-normal-dispersion fiber lasers mode-locked with nonlinear polarization rotation. Opt Express. 2012;20:27447–53.

    [13] Schibli TR, Thoen ER, Kärtner FX, Ippen EP. Suppression of Q-switched mode locking and break-up into multiple pulses by inverse saturable absorption. Appl Phys B. 2000;70:S41–9.

    [14] Broderick NGR, Offerhaus HL, Richardson DJ, Sammut RA. Power scaling in passively mode-locked large-mode area fiber lasers. IEEE Photonics Technol Lett. 1998;10:1718–20.

    [15] Broderick NGR, et al. Large mode area fibers for high power applications. Opt Fiber Technol. 1999;5:185–96.

    [16] Liu W, et al. Single-polarization large-mode-area fiber laser mode-locked with a nonlinear amplifying loop mirror. Opt Lett. 2018;43:2848–51.

    [17] Ding E, Lefrancois S, Kutz JN, Wise FW. Scaling fiber lasers to large mode area: an investigation of passive mode-locking using a multi-mode fiber. IEEE J Quantum Electron. 2011;47:597–606.

    [18] Li C, et al. Fiber chirped pulse amplification of a short wavelength mode-locked thulium-doped fiber laser. APL Photonics. 2017;2:1213021-5i.

    [19] Sobon G, et al. Chirped pulse amplification of a femtosecond Er-doped fiber laser mode-locked by a graphene saturable absorber. Laser Phys Lett. 2013;10:035104.

    [20] Sumimura K, Yoshida H, Fujita H, Nakatsuka M. Femtosecond mode-locked Yb fiber laser for single-mode fiber chirped pulse amplification system. Laser Phys. 2007;17:339–44.

    [21] Stock ML, Mourou G. Chirped pulse amplification in an erbium-doped fiber oscillator/ erbium-doped fiber amplifier system. Optics Commun. 1994;106:249–52.

    [22] Maine P, Strickland D, Bado P, Pessot M, Mourou G. Generation of ultrahigh peak power pulses by chirped pulse amplification. IEEE J Quantum Electron. 1988;24:398–403.

    [23] Galvanauskas A. Mode-scalable fiber-based chirped pulse amplification systems. IEEE J Sel Top Quantum Electron. 2001;7:504–17.

    [24] Huttunen A, Törmä P. Optimization of dual-core and microstructure fiber geometries for dispersion compensation and large mode area. Opt Express. 2005;13:627–35.

    [25] Yu-lai S, Wen-tao Z, Guoling L, Yuan T, Shan T. Optimal design of large mode area all-solid-fiber using a gray relational optimization technique. Optik. 2021;242:167188.

    [26] Li F, et al. A large dispersion-managed monolithic all-fiber chirped pulse amplification system for high-energy femtosecond laser generation. Opt Laser Technol. 2022;147:107684.

    [27] Fermann ME, Sugden K, Bennion I. High-power soliton fiber laser based on pulse width control with chirped fiber Bragg gratings. Opt Lett. 1995;20:172–4.

    [28] Cabasse A, Martel G, Oudar JL. High power dissipative soliton in an Erbium-doped fiber laser mode-locked with a high modulation depth saturable absorber mirror. Opt Express. 2009;17:9537–42.

    [29] Ding E, Grelu P, Kutz JN. Dissipative soliton resonance in a passively mode-locked fiber laser. Opt Lett. 2011;36:1146–8.

    [30] Chongyuan H, et al. Developing high energy dissipative soliton fiber lasers at 2 micron. Sci Rep-uk. 2015;5:13680.

    [31] Peng J, Boscolo S, Zhao Z, Zeng H. Breathing dissipative solitons in mode-locked fiber lasers. Sci Adv. 2019;5:eaax1110.

    [32] Chang W, Soto-Crespo JM, Ankiewicz A, Akhmediev N. Dissipative soliton resonances in the anomalous dispersion regime. Phys Rev A. 2009;79:33840–5.

    [33] Liu X. Coexistence of strong and weak pulses in a fiber laser with largely anomalous dispersion. Opt Express. 2011;19:5874.

    [34] Duan L, Liu X, Mao D, Wang L, Wang G. Experimental observation of dissipative soliton resonance in an anomalous-dispersion fiber laser. Opt Express. 2012;20:265.

    [35] Zhao J, Li L, Zhao L, Tang D, Shen D. Dissipative soliton resonances in a mode-locked holmium-doped fiber laser. IEEE Photonic Tech L. 2018;30:1699–702.

    [36] Krzempek K, Abramski K. Dissipative soliton resonance mode-locked double clad Er: Yb laser at different values of anomalous dispersion. Opt Express. 2016;24:22379.

    [37] Ibarra-Escamilla B, et al. Dissipative soliton resonance in a thulium-doped all-fiber laser operating at large anomalous dispersion regime. IEEE Photonics J. 2018;10:1–7.

    [38] Peng J, Zeng H. Soliton collision induced explosions in a mode-locked fibre laser. Commun Phys. 2019;2:34.

    [39] Zhou Y, Ren Y-X, Shi J, Wong KKY. Breathing dissipative soliton explosions in a bidirectional ultrafast fiber laser. Photon Res. 2020;8:1566–72.

    [40] Haus HA. Theory of mode locking with a fast saturable absorber. J Appl Phys. 1975;46:3049–58.

    [41] Haus HA, Fellow L. Mode-locking of lasers. Sel Top Quantum Electron. 2000;6:1173–85.

    [42] Haus H. Parameter ranges for CW passive mode locking. IEEE J Quantum Electron. 1976;12:169–76.

    [43] Liu X. Dissipative soliton evolution in ultra-large normal-cavity-dispersion fiber lasers. Opt Express. 2009;17:9549.

    [44] Liu X. Numerical and experimental investigation of dissipative solitons in passively mode-locked fiber lasers with large net-normal-dispersion and high nonlinearity. Opt Express. 2009;17:22401–16.

    [45] Liu D, Zhu X, Wang C, Yu J, Hu D. Low-repetition-rate, high-energy, twin-pulse, passively mode locked Yb3+-doped fiber laser. Appl Opt. 2011;50:484–91.

    [46] Zhang M, Chen L, Zhou C, Cai Y, Zhang Z. Ultra-low repetition rate all-normal-dispersion linear-cavity mode-locked fiber lasers. 2009.

    [47] Kobtsev S, Kukarin S, Fedotov Y. Ultra-low repetition rate mode-locked fiber laser with high-energy pulses. Opt Express. 2008;16:21936–41.

    [48] Liu XM, Mao D. Compact all-fiber high-energy fiber laser with sub-300-fs duration. Opt Express. 2010;18:8847–52.

    [49] Jeong H, et al. All-fiber Tm-doped soliton laser oscillator with 6 nJ pulse energy based on evanescent field interaction with monoloayer graphene saturable absorber. Opt Express. 2016;24:14152.

    [50] Choi SY, Jeong H, Hong BH, Rotermund F, Yeom D-I. All-fiber dissipative soliton laser with 10.2 nJ pulse energy using an evanescent field interaction with graphene saturable absorber. Laser Phys Lett. 2014;11:15101.

    [51] Zhu X, Wang C, Liu S, Zhang G. Tunable high-order harmonic mode-locking in Yb-doped fiber laser with all-normal dispersion. IEEE Photonics Technology Letters. 2012;24:754–6.

    [52] Wang J, et al. All-normal-dispersion passive harmonic mode-locking 220 fs ytterbium fiber laser. Appl Optics. 2014;53:5088.

    [53] Peng J, Zhan L, Luo S, Shen Q. Passive harmonic mode-locking of dissipative solitons in a normal-dispersion Er-doped fiber laser. J Lightwave Technol. 2013;31:3009–14.

    [54] Huang SS, et al. High order harmonic mode-locking in an all-normal-dispersion Yb-doped fiber laser with a graphene oxide saturable absorber. Laser Phys. 2013;24:015001.

    [55] Wu X, Tang DY, Zhang H, Zhao LM. Dissipative soliton resonance in an all-normaldispersion erbium-doped fiber laser. Opt Express. 2009;17:5580.

    [56] Choi SY, Jeong H, Hong BH, Rotermund F, Yeom D-I. All-fiber dissipative soliton laser with 10.2 nJ pulse energy using an evanescent field interaction with graphene saturable absorber. Laser Phys Lett. 2013;11:015101.

    [57] Semaan G, et al. 10 µJ dissipative soliton resonance square pulse in a dual amplifier figure-of-eight double-clad Er: Yb mode-locked fiber laser. Opt Lett. 2016;41:4767.

    [58] Zhang H, Bao Q, Tang D, Zhao L, Loh K. Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker. Appl Phys Lett. 2009;95:141103.

    [59] Engelbrecht M, Haxsen F, Ruehl A, Wandt D, Kracht D. Ultrafast thulium-doped fiber-oscillator with pulse energy of 4.3 nJ. Opt Lett. 2008;33:690–2.

    [60] Sayinc H, Mortag D, Wandt D, Neumann J, Kracht D. Sub-100 fs pulses from a low repetition rate Yb-doped fiber laser. Opt Express. 2009;17:5731–5.

    [61] Chen T, Liao C, Wang DN, Wang Y. Passively mode-locked fiber laser by using monolayer chemical vapor deposition of graphene on D-shaped fiber. Appl Opt. 2014;53:2828–32.

    [62] Chong A, Renninger WH, Wise FW. Route to the minimum pulse duration in normal-dispersion fiber lasers. Opt Lett. 2008;33:2638–40.

    [63] Zhang H, et al. Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser. Appl Phys Lett. 2010;96:111112.

    [64] Rodriguez-Morales LA, et al. Long cavity ring fiber mode-locked laser with decreased net value of nonlinear polarization rotation. Opt Express. 2019;27:14030–40.

    [65] Chamorovskiy A, et al. Femtosecond mode-locked holmium fiber laser pumped by semiconductor disk laser. Opt Lett. 2012;37:1448–50.

    [66] Zhang H, Tang DY, Zhao LM, Bao QL, Loh KP. Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene. Opt Express. 2009;17:17630–5.

    [67] Jung M, et al. Mode-locked pulse generation from an all-fiberized, Tm-Ho-codoped fiber laser incorporating a graphene oxide-deposited side-polished fiber. Opt Express. 2013;21:20062–72.

    [68] Kadel R, Washburn BR. Stretched-pulse and solitonic operation of an all-fiber thulium/holmium-doped fiber laser. Appl Opt. 2015;54:746–50.

    [69] Wan P, Yang L-M, Liu J. High pulse energy 2 µm femtosecond fiber laser. Opt Express. 2013;21:1798–803.

    [70] Song Y-W, Jang S-Y, Han W-S, Bae M-K. Graphene mode-lockers for fiber lasers functioned with evanescent field interaction. Appl Phys Lett. 2010;96:051122.

    [71] Junting L, et al. High output mode-locked laser empowered by defect regulation in 2D Bi2O2Se saturable absorber. Nat Commun. 2022;13:3855.

    Jinhwa Gene, Seung Kwan Kim, Sun Lim, Min Yong Jeon. Ultrafast dissipative soliton generation in anomalous dispersion achieving high peak power beyond the limitation of cubic nonlinearity[J]. PhotoniX, 2023, 4(1): 36
    Download Citation