• Journal of Atmospheric and Environmental Optics
  • Vol. 18, Issue 6, 617 (2023)
FANG Lulu1、2、*, HONG Jin2, ZHANG Aiwen2, JIN Jie2, and LUO Donggen2
Author Affiliations
  • 1Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
  • 2Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
  • show less
    DOI: 10.3969/j.issn.1673-6141.2023.06.009 Cite this Article
    Lulu FANG, Jin HONG, Aiwen ZHANG, Jie JIN, Donggen LUO. Reliability analysis of power supply and distribution system for directional polarization camera[J]. Journal of Atmospheric and Environmental Optics, 2023, 18(6): 617 Copy Citation Text show less
    Function diagram of power supply and distribution module
    Fig. 1. Function diagram of power supply and distribution module
    Reliability block diagram of main and standby switching circuit
    Fig. 2. Reliability block diagram of main and standby switching circuit
    Reliability block diagram of protection circuit
    Fig. 3. Reliability block diagram of protection circuit
    Reliability block diagram of surge suppression circuit
    Fig. 4. Reliability block diagram of surge suppression circuit
    DC-DC circuit reliability block diagram
    Fig. 5. DC-DC circuit reliability block diagram
    方法适用阶段实施方式方法特点

    相似产品法

    数据缺乏的设计初期阶段确定与新产品相似性最高的现有产品, 比较新旧产品的相似点, 在已有产品的可靠性预计结果的基础上, 依据两产品的相似点分析, 经过修正, 对新产品的可靠性水平进行预计[3]分析时所需的数据量较小, 仅适用于有继承性的产品

    元件计数法

    设备方案论证阶段以及初步设计阶段利用串联模型来预计产品可靠性的方法, 不考虑系统的元器件连接方式, 根据元器件的数量、通用失效率、质量系数来初步估计系统的可靠性[5]

    结果较为粗糙、不详细

    评分预计法

    产品的可靠性数据较为缺乏时

    根据工程技术人员的工程经验, 对已知可靠性数据的单元与其他单元的几种影响因素进行评分, 将其他单元的评分结果与已知可靠性数据单元的评分进行对比, 得出评分系数, 最后根据评分系数及已知的可靠性数据对其他单元进行可靠性预计[6]分析的结果依赖于评分人员的工程经验, 需在后期实践中不断进行修正

    应力分析法

    产品的详细设计阶段

    根据系统的组成及工作原理, 建立可靠性模型, 分析系统各组成单元的元器件的工作环境、工作应力, 再汇总各元器件的详细信息, 对各元器件的失效率进行计算, 最后依据系统的可靠性模型, 逐级计算系统的可靠性指标[7]所得的结果更为贴近元器件的实际状态, 且在分析的过程中, 可以发现系统的可靠性薄弱环节, 便于采取相应措施进行改进
    Table 1. Characteristics of each reliability prediction method
    ComponentCalculation modelElectrical stress ratio (S)Calculation result

    Solid tantalum capacitor

    λp= λbπEπQπCVπSRπch

    S = 0.071λp= 0.000356 × 10-6/h
    S = 0.214λp= 0.000393 × 10-6/h
    S = 0.343λp= 0.000356 × 10-6/h
    S = 0.600λp= 0.001181 × 10-6/h
    Non-solid tantalum capacitorλp= λbπEπQπCVλp= 0.001478 × 10-6/h

    Ceramic capacitor

    λp= λbπEπQπCVπch

    S = 0.280λp= 0.000161 × 10-6/h
    S = 0.025λp= 0.000103 × 10-6/h
    S = 0.075λp= 0.000103 × 10-6/h
    S = 0.150λp= 0.000129 × 10-6/h
    S = 0.060λp= 0.000103 × 10-6/h
    Chip film resistorλp= λbπEπQπRλp= 0.00035 × 10-6/h
    Wire wound resistorλp= λbπEπQπRπKλp= 0.01221 × 10-6/h
    Electrical connectorλp= λbπEπQπPπKπCλp= 0.02617 × 10-6/h
    Inductorλp= λbπEπQπKπCλp= 0.0021 × 10-6/h
    Diodeλp= λbπEπQπrπAπS2πCλp= 0.000027 × 10-6/h
    Fuseλp= 0.003 × 10-6/h

    Metal-oxide-semiconductor field

    effect transistor

    λp= λbπEπQπTπSλp= 0.000047 × 10-6/h
    Magnetic latching relayλp= λbπEπQπTπSλp= 0.000347 × 10-6/h
    Filterλp= λbπEπQλp= 0.096 × 10-6/h
    DC-DC convertλp= 1/tMTBFPrototype phase: λp= 2.342 × 10-6/h
    Flight model phase: λp= 1.289 × 10-6/h
    Table 2. Calculation of failure rate of electronic components used in the power supply and distribution system
    DC-DC outputFilterOutput protectionConversion
    +5 Vλ11' = 2.342 × 10-6/hλ12' = 0.002643 × 10-6/hλ13' = 0.000727 × 10-6/hλ1' = λ11'+λ12'+λ13' = 2.3454 × 10-6/h
    +30 Vλ21' = 2.342 × 10-6/hλ22' = 0.002643 × 10-6/hλ23' = 0.000377 × 10-6/hλ2' = λ21'+λ22'+λ23' = 2.3450 × 10-6/h
    +15 Vλ31' = 2.342 × 10-6/hλ32' = 0.005731 × 10-6/hλ33' = 0.000727 × 10-6/hλ3' = λ31'+λ32'+λ33' = 2.3485 × 10-6/h
    ±12 Vλ41' = 2.342 × 10-6/hλ42' = 0.002628 × 10-6/hλ43' = 0.000441 × 10-6/hλ4' = λ41'+λ42'+λ43' = 2.3451 × 10-6/h
    Table 3. Calculation of failure rate of each DC-DC conversion circuit in prototype phase
    DC-DC outputFilterOutput protectionConversion
    +5 Vλ11 =1.289 × 10-6/hλ12 = 0.002643 × 10-6/hλ13 = 0.000727 × 10-6/hλ1 = λ11+ λ12+ λ13 = 1.2924 × 10-6/h
    +30 Vλ21 = 1.289 × 10-6/hλ22 = 0.002643 × 10-6/hλ23 = 0.000377 × 10-6/hλ2 = λ21+ λ22+ λ23 = 1.2920 × 10-6/h
    +15 Vλ31 = 1.289 × 10-6/hλ32 = 0.005731 × 10-6/hλ33 = 0.000727 × 10-6/hλ3 = λ31+ λ32+ λ33 = 1.2955 × 10-6/h
    ±12 Vλ41 = 1.289 × 10-6/hλ42 = 0.002628 × 10-6/hλ43 = 0.000441 × 10-6/hλ4 = λ41+ λ42+ λ43 = 1.2921 × 10-6/h
    Table 4. Calculation of failure rate of each DC-DC conversion circuit in model phase
    Lulu FANG, Jin HONG, Aiwen ZHANG, Jie JIN, Donggen LUO. Reliability analysis of power supply and distribution system for directional polarization camera[J]. Journal of Atmospheric and Environmental Optics, 2023, 18(6): 617
    Download Citation