• Advanced Photonics
  • Vol. 7, Issue 3, 036001 (2025)
Suim Lim1,2, Dong Hee Park3, Bin Chan Joo3, Yeon Ui Lee3,*, and Kanghoon Yim1,*
Author Affiliations
  • 1Korea Institute of Energy Research, Energy AI and Computational Science Laboratory, Daejeon, Republic of Korea
  • 2Sogang University, Department of Mechanical Engineering, Seoul, Republic of Korea
  • 3Chungbuk National University, Department of Physics, Cheongju, Republic of Korea
  • show less
    DOI: 10.1117/1.AP.7.3.036001 Cite this Article Set citation alerts
    Suim Lim, Dong Hee Park, Bin Chan Joo, Yeon Ui Lee, Kanghoon Yim, "Exploring uncharted multiband hyperbolic dispersion in conjugated polymers: a first-principles study," Adv. Photon. 7, 036001 (2025) Copy Citation Text show less
    References

    [1] Y. Guo, Z. Jacob. Thermal hyperbolic metamaterials. Opt. Express, 21, 15014-15019(2013).

    [2] D. Figueiredo et al. Cosmology in the laboratory: an analogy between hyperbolic metamaterials and the Milne universe. Phys. Rev. D, 96, 105012(2017).

    [3] A. Poddubny et al. Hyperbolic metamaterials. Nat. Photonics, 7, 948-957(2013).

    [4] J. Yao et al. Optical negative refraction in bulk metamaterials of nanowires. Science, 321, 930(2008).

    [5] Y. U. Lee et al. Hyperbolic material enhanced scattering nanoscopy for label-free super-resolution imaging. Nat. Commun., 13, 6631(2022).

    [6] Z. Wang et al. Two-dimensional materials for tunable and nonlinear metaoptics. Adv. Photonics, 6, 034001(2024).

    [7] P. Li et al. Infrared hyperbolic metasurface based on nanostructured van der Waals materials. Science, 359, 892-896(2018).

    [8] A. J. Giles et al. Ultralow-loss polaritons in isotopically pure boron nitride. Nat. Mater., 17, 134-139(2018).

    [9] A. A. Govyadinov et al. Probing low-energy hyperbolic polaritons in van der Waals crystals with an electron microscope. Nat. Commun., 8, 95(2017).

    [10] J. Sun et al. Indefinite permittivity and negative refraction in natural material: graphite. Appl. Phys. Lett., 98, 101901(2011).

    [11] E. E. Narimanov, A. V. Kildishev. Naturally hyperbolic. Nat. Photonics, 9, 214-216(2015).

    [12] H. Wu et al. Tunable biaxial hyperbolic dispersion and negative refraction in graphite. Mod. Phys. Lett. B, 34, 2050110(2020).

    [13] J. Sun, N. M. Litchinitser, J. Zhou. Indefinite by nature: from ultraviolet to terahertz. ACS Photonics, 1, 293-303(2014).

    [14] R. M. Córdova-Castro et al. Anisotropic plasmonic CuS nanocrystals as a natural electronic material with hyperbolic optical dispersion. ACS Nano, 13, 6550-6560(2019).

    [15] Y. U. Lee et al. Organic monolithic natural hyperbolic material. ACS Photonics, 6, 1681-1689(2019).

    [16] Y. U. Lee et al. Low‐loss organic hyperbolic materials in the visible spectral range: a joint experimental and first‐principles study. Adv. Mater., 32, 2002387(2020).

    [17] D. G. Lidzey et al. Room temperature polariton emission from strongly coupled organic semiconductor microcavities. Phys. Rev. Lett., 82, 3316-3319(1999).

    [18] L. C. Flatten et al. Electrically tunable organic–inorganic hybrid polaritons with monolayer WS2. Nat. Commun., 8, 14097(2017).

    [19] J. Szeremeta et al. Wavelength dependence of the complex third-order nonlinear optical susceptibility of poly(3-hexylthiophene) studied by femtosecond Z-scan in solution and thin film. J. Phys. Chem. C, 117, 26197-26203(2013).

    [20] Y. U. Lee et al. Organic hyperbolic material assisted illumination nanoscopy. Adv. Sci., 8, 2102230(2021).

    [21] H. Hwang et al. High absorption coefficient π-conjugation-extended donor-acceptor copolymers for ternary-blend solar cells. Org. Electron., 83, 105738(2020).

    [22] M. Brinkmann. Insights into the structural complexity of semi-crystalline polymer semiconductors: electron diffraction contributions. Mater. Chem. Front., 4, 1916-1929(2020).

    [23] K. B. Ørnsø, J. M. Garcia-Lastra, K. S. Thygesen. Computational screening of functionalized zinc porphyrins for dye sensitized solar cells. Phys. Chem. Chem. Phys., 15, 19478-19486(2013).

    [24] M. Mesta et al. A protocol for fast prediction of electronic and optical properties of donor–acceptor polymers using density functional theory and the tight-binding method. J. Phys. Chem. A, 123, 4980-4989(2019).

    [25] A. Azazi et al. DFT modeling of conjugated copolymers photophysical properties: towards organic solar cell application. Synthetic Metals, 198, 314-322(2014).

    [26] T. M. McCormick et al. Conjugated polymers: evaluating DFT methods for more accurate orbital energy modeling. Macromolecules, 46, 3879-3886(2013).

    [27] M. Qiu et al. Theoretical study on the rational design of cyano-substituted P3HT materials for OSCs: substitution effect on the improvement of photovoltaic performance. J. Phys. Chem. C, 119, 8501-8511(2015).

    [28] J. Lee et al. A planar cyclopentadithiophene–benzothiadiazole-based copolymer with sp2-hybridized bis(alkylsulfanyl)methylene substituents for organic thermoelectric devices. Macromolecules, 51, 3360-3368(2018).

    [29] R. A. F. Alexandre, O. V. De Oliveira, J. D. Dos Santos. Theoretical studies of new PCPDTBT derivatives as possible electron donor on polymer solar cells. Chem. Phys. Lett., 766, 138328(2021).

    [30] G. Kresse, J. Hafner. Ab initio molecular dynamics for liquid metals. Phys. Rev. B, 47, 558-561(1993).

    [31] J. P. Perdew, K. Burke, M. Ernzerhof. Generalized gradient approximation made simple. Phys. Rev. Lett., 77, 3865-3868(1996).

    [32] S. Grimme et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys., 132, 154104(2010).

    [33] J. Heyd, G. E. Scuseria, M. Ernzerhof. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys., 118, 8207-8215(2003).

    [34] M. Lee et al. High-throughput ab initio calculations on dielectric constant and band gap of non-oxide dielectrics. Sci. Rep., 8, 14794(2018).

    [35] K. Yim et al. Novel high-κ dielectrics for next-generation electronic devices screened by automated ab initio calculations. NPG Asia Mater., 7, e190(2015).

    [36] L. Gu et al. Quest for organic plasmonics. Appl. Phys. Lett., 103, 021104(2013).

    [37] P. Li et al. Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing. Nat. Commun., 6, 7507(2015).

    [38] B. Wood, J. B. Pendry, D. P. Tsai. Directed subwavelength imaging using a layered metal-dielectric system. Phys. Rev. B, 74, 115116(2006).

    [39] W. D. Newman, C. L. Cortes, Z. Jacob. Enhanced and directional single-photon emission in hyperbolic metamaterials. J. Opt. Soc. Am. B, 30, 766-775(2013).

    [40] Z. Jacob, I. I. Smolyaninov, E. E. Narimanov. Broadband Purcell effect: radiative decay engineering with metamaterials. Appl. Phys. Lett., 100, 181105(2012).

    [41] P. V. Kapitanova et al. Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes. Nat. Commun., 5, 3226(2014).

    [42] G. Liang et al. Squeezing bulk plasmon polaritons through hyperbolic metamaterials for large area deep subwavelength interference lithography. Adv. Opt. Mater., 3, 1248-1256(2015).

    [43] S. Ishii et al. Sub‐wavelength interference pattern from volume plasmon polaritons in a hyperbolic medium. Laser Photonics Rev., 7, 265-271(2013).

    [44] Z. Liu et al. Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science, 315, 1686(2007).

    [45] S. S. Zade, N. Zamoshchik, M. Bendikov. From short conjugated oligomers to conjugated polymers: lessons from studies on long conjugated oligomers. Acc. Chem. Res., 44, 14-24(2011).

    [46] K. Zhao et al. Entanglement of conjugated polymer chains influences molecular self‐assembly and carrier transport. Adv. Funct. Mater., 23, 6024-6035(2013).

    [47] F. Schindler et al. How single conjugated polymer molecules respond to electric fields. Nat. Mater., 5, 141-146(2006).

    [48] M. Scarongella et al. A close look at charge generation in polymer: fullerene blends with microstructure control. J. Am. Chem. Soc., 137, 2908-2918(2015).

    [49] P. J. Brown et al. Optical spectroscopy of field-induced charge in self-organized high mobility poly(3-hexylthiophene). Phys. Rev. B, 63, 125204(2001).

    Suim Lim, Dong Hee Park, Bin Chan Joo, Yeon Ui Lee, Kanghoon Yim, "Exploring uncharted multiband hyperbolic dispersion in conjugated polymers: a first-principles study," Adv. Photon. 7, 036001 (2025)
    Download Citation