• Study On Optical Communications
  • Vol. 49, Issue 1, 73 (2023)
Mu-yang SU, Zhi-xin LI, Cong WU, Liang ZHONG, and Jing SUN*
Author Affiliations
  • College of Physics and Electromechanical Engineering, Jishou University, Jishou 416000, China
  • show less
    DOI: 10.13756/j.gtxyj.2023.01.010 Cite this Article
    Mu-yang SU, Zhi-xin LI, Cong WU, Liang ZHONG, Jing SUN. Design of Dual-resonator Six-channel WDM based on 2-D Photonic Crystal[J]. Study On Optical Communications, 2023, 49(1): 73 Copy Citation Text show less
    References

    [1] Yablonovitch E. Inhibited Spontaneous Emission in Solid-state Physics an Electronics[J]. Physical Review Letters, 58, 2059-2062(1987).

    [2] Sajeev J. Strong Localization of Photons in Certain Disordered Dielectric Superlattices[J]. Physical Review Letters, 58, 2486-2489(1987).

    [3] David A, Benisty H, Weisbuch C. Photonic Crystal Light-emit-ting Sources[J]. Reports on Progress in Physics, 75, 126501-126538(2012).

    [4] Xu Q, Peng C Y. The Properties of Two-dimensional Photonic Crystals Bandgap Structure with Rhombus Lattice[J]. Optik-International Journal for Light and Electron Optics, 125, 104-106(2014).

    [5] Herrmann R, Sünner T, Hein T et al. Ultrahigh-quality Photonic Crystal Cavity in GaAs[J]. Optics Letters, 31, 1229-1231(2006).

    [6] Geravand A, Danaie M, Mohammadi S. All-optical Photonic Crystal Memory Cells based on Cavities with a Dual-argument Hysteresis Feature[J]. Optics Communications, 430, 323-335(2019).

    [7] Okayama H, Onawa Y, Shimura D et al. Wavelength Filter Using Twin One-dimensional Photonic Crystal Cavity Silicon Waveguides[J]. Electronics Letters, 55, 107-109(2018).

    [8] Cheraghi F, Soroosh M, Akbarizadeh G. An Ultra-compact all Optical Full Adder based on Nonlinear Photonic Crystal Resonant Cavities[J]. Superlattices and Microstructures, 113, 359-365(2018).

    [9] Djavid M, Dastjerdi M H T, Philip M R et al. Photonic Crystal-based Permutation Switch for Optical Networks[J]. Photonic Network Communications, 35, 90-96(2018).

    [10] Li M F, Chen D Y, Zhang Y et al. Research on Scalable and Miniaturized Photonic Crystal Wavelength Division Multiplexer[J]. Laser & Optoelectronics Progress, 58, 316-324(2021).

    [11] Wu R, Liu Z, Yan Q B et al. Eight-channel Photonic-crystal Wavelength-division Multiplexer[J]. Laser & Optoelectronics Progress, 56, 091302(2019).

    [12] Zhang T, Sun J, Yang Y X. Design of WDM based on Photonic Crystal[J]. Optical Communication Technology, 42, 33-35(2018).

    [13] Wu R, Li L F, Ma Y Y. Research and Design of Six-channel Photonic Crystal Wavelength Division Multiplexer[J]. Laser & Optoelectronics Progress, 58, 032302(2021).

    [14] Moungar A, Badaoui H, Abri M. 16-Channels Wavelength Efficient Demultiplexing Around 1. 31/1. 55 μm in 2D Photonic Crystal Slab[J]. Optik - International Journal for Light and Electron Optics, 193, 162685(2019).

    [15] Wang Y, Zhang K, Shao L et al. A Six-channel Wavelength Demultiplexer based on Photonic Crystal Ring Resonators[J]. Laser Journal, 40, 45-49(2019).

    [16] Cui N D, Liang J Q, Liang Z Z et al. Photonic Crystals and 2-D Photonic Crystal Waveguides[J]. Ome Information, 26, 19-27(2009).

    [17] Li X, Le Z C. The Design and Simulation of Wavelength Division Demultiplexer based on Photonic Crystal Micro-cavity[J]. Acta Photonica Sinica, 43, 201-206(2014).

    [18] Ge D B[M]. Finite-Difference Time-domain Method for Electromagnetic Waves(2011).

    [19] Ren H, Jiang C, Hu W et al. Photonic Crystal Channel Drop Filter with a Wavelength-selective Reflection Micro-cavity[J]. Optics Express, 14, 2446-2458(2006).

    Mu-yang SU, Zhi-xin LI, Cong WU, Liang ZHONG, Jing SUN. Design of Dual-resonator Six-channel WDM based on 2-D Photonic Crystal[J]. Study On Optical Communications, 2023, 49(1): 73
    Download Citation