• Optics and Precision Engineering
  • Vol. 30, Issue 17, 2147 (2022)
Wenbo HUANG1,*, Yuxiang HUANG1, Yuan YAO2, and Yang YAN1
Author Affiliations
  • 1School of Computer Science and Technology, Changchun Normal University, Changchun30032, China
  • 2Bureau of Major Tasks, Chinese Academy of Sciences, Beijing100864, China
  • show less
    DOI: 10.37188/OPE.20223017.2147 Cite this Article
    Wenbo HUANG, Yuxiang HUANG, Yuan YAO, Yang YAN. Automatic classification of retinopathy with attention ConvNeXt[J]. Optics and Precision Engineering, 2022, 30(17): 2147 Copy Citation Text show less
    References

    [1] T LI, W BO, C Y HU et al. Applications of deep learning in fundus images: a review. Medical Image Analysis, 69, 101971(2021).

    [2] W L ALYOUBI, W M SHALASH, M F ABULKHAIR. Diabetic retinopathy detection through deep learning techniques: a review. Informatics in Medicine Unlocked, 20, 100377(2020).

    [3] K L XU, D W FENG, H B MI. Deep convolutional neural network-based early automated detection of diabetic retinopathy using fundus image. Molecules (Basel, Switzerland), 22, 2054(2017).

    [4] H Y JIANG, K YANG, M D GAO et al. An interpretable ensemble deep learning model for diabetic retinopathy disease classification. Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual International Conference, 2019, 2045-2048(2019).

    [5] X G LI, T T PANG, B XIONG et al. Convolutional neural networks based transfer learning for diabetic retinopathy fundus image classification, 1-11(16).

    [6] 6韦哲, 赵刚, 王能才, 等. 基于深度学习的糖尿病视网膜分类方法研究[J]. 中国医学装备, 2020, 17(10): 11-15. doi: 10.3969/J.ISSN.1672-8270.2020.10.004WEIZH, ZHAOG, WANGN C, et al. Study on the classification method of diabetic retina based on in-depth learning[J]. China Medical Equipment, 2020, 17(10): 11-15.(in Chinese). doi: 10.3969/J.ISSN.1672-8270.2020.10.004

    [7] F CHOLLET. Xception: deep learning with depthwise separable convolutions, 21, 1800-1807(2017).

    [8] 8王嘉良, 罗健旭, 刘斌, 等. 基于R-FCN算法的糖尿病眼底病变自动诊断[J]. 计算机工程与应用, 2020, 56(4): 109-114.WANGJ L, LUOJ X, LIUB, et al. Automatic detection of diabetic retinopathy based on R-FCN algorithm[J]. Computer Engineering and Applications, 2020, 56(4): 109-114.(in Chinese)

    [9] Z W LIN, R Q GUO, Y J WANG et al. A Framework for Identifying Diabetic Retinopathy Based on Anti-noise Detection and Attention-based Fusion. Medical Image Computing and Computer Assisted Intervention-MICCAI 2018, 74-82(2018).

    [10] 10郑雯, 沈琪浩, 任佳. 基于Improved DR-Net算法的糖尿病视网膜病变识别与分级[J]. 光学学报, 2021, 41(22): 72-83. doi: 10.3788/aos202141.2210002ZHENGW, SHENQ H, RENJ. Recognition and classification of diabetic retinopathy based on improved DR-net algorithm[J]. Acta Optica Sinica, 2021, 41(22): 72-83.(in Chinese). doi: 10.3788/aos202141.2210002

    [11] 11谢云霞, 黄海于, 胡建斌. 基于深度卷积神经网络的糖尿病视网膜病变分期及病灶检测[J]. 计算机应用, 2020, 40(8): 2460-2464. doi: 10.11772/j.issn.1001-9081.2019122198XIEY X, HUANGH Y, HUJ B. Staging and lesion detection of diabetic retinopathy based on deep convolution neural network[J]. Journal of Computer Applications, 2020, 40(8): 2460-2464.(in Chinese). doi: 10.11772/j.issn.1001-9081.2019122198

    [12] B GRAHAM. Kaggle diabetic retinopathy detection competition report. University of Warwick, Tech(2015).

    [13] Z LIU, Y T LIN, Y CAO et al. Swin transformer: hierarchical vision transformer using shifted windows, 10, 10012-10022(2021).

    [14] K M HE, X Y ZHANG, S Q REN et al. Deep residual learning for image recognition. : arXiv, 1512-03385(2016). https://arxiv.org/abs/1512.03385

    [15] G HUANG, Z LIU, L VAN DER MAATEN et al. Densely connected convolutional networks, 2261-2269(2016).

    [16] X Y ZHANG, X Y ZHOU, M X LIN et al. ShuffleNet: an extremely efficient convolutional neural network for mobile devices, 6848-6856(2018).

    Wenbo HUANG, Yuxiang HUANG, Yuan YAO, Yang YAN. Automatic classification of retinopathy with attention ConvNeXt[J]. Optics and Precision Engineering, 2022, 30(17): 2147
    Download Citation