[1] P. de Groot, R. Leach. Coherence scanning interferometry. Optical Measurement of Surface Topography, 187-208(2011).
[2] P. Lehmann, S. Tereschenko, W. Xie. Fundamental aspects of resolution and precision in vertical scanning white-light interferometry. Surf. Topogr. Metrol. Properties, 4, 024004(2016).
[3] T. R. Corle, G. S. Kino. Confocal Scanning Optical Microscopy and Related Imaging Systems(1996).
[4] R. Artigas, R. Leach. Imaging confocal microscopy. Optical Measurement of Surface Topography, 237-286(2011).
[5] R. Danzl, F. Helmli, S. Scherer. Focus variation—a robust technology for high resolution optical 3D surface metrology. Strojniski Vestnik/J. Mech. Eng., 57, 245-256(2011).
[6] L. Newton et al. Areal topography measurement of metal additive surfaces using focus variation microscopy. Addit. Manuf., 25, 365-389(2019).
[7] R. Leach. Optical Measurement of Surface Topography(2011).
[8] D. Malacara, J. Schmit, K. Creath, J. Wyant. Surface profilers, multiple wavelength, and white light interferometry. Optical Shop Testing, 667-755(2007).
[9] A. Harasaki, J. Wyant. Fringe modulation skewing effect in white-light vertical scanning interferometry. Appl. Opt., 39, 2101-2106(2000).
[10] P. de Groot et al. Determination of fringe order in white-light interference microscopy. Appl. Opt., 41, 4571-4578(2002).
[11] M. Conroy, J. Armstrong. A comparison of surface metrology techniques. J. Phys. Conf. Ser., 13, 458(2005).
[12] F. Mauch et al. Improved signal model for confocal sensors accounting for object depending artifacts. Opt. Express, 20, 19936-19945(2012).
[13] C. Giusca et al. Practical estimation of measurement noise and flatness deviation on focus variation microscopes. CIRP Ann., 63, 545-548(2014).
[14] M. Rahlves, B. Roth, E. Reithmeier. Systematic errors on curved microstructures caused by aberrations in confocal surface metrology. Opt. Express, 23, 9640-9648(2015).
[15] W. Xie et al. Signal modeling in low coherence interference microscopy on example of rectangular grating. Opt. Express, 24, 14283-14300(2016).
[16] A. Thompson et al. Topography of selectively laser melted surfaces: a comparison of different measurement methods. CIRP Ann., 66, 543-546(2017).
[17] X. Xu, S. Hagemeier, P. Lehmann. Outlier elimination in rough surface profilometry with focus variation microscopy. Metrology, 2, 263-273(2022).
[18] S. Hagemeier. Comparison and investigation of various topography sensors using a multisensor measuring system(2022).
[19] T. Pahl et al. Vectorial 3D modeling of coherence scanning interferometry. Proc. SPIE, 11783, 117830G(2021).
[20] T. Pahl, J. Breidenbach, P. Lehmann. Quasi-analytical and rigorous modeling of interference microscopy, 10013(2022).
[21] T. Pahl et al. 3D modeling of coherence scanning interferometry on 2D surfaces using FEM. Opt. Express, 28, 39807-39826(2020).
[22] T. Pahl et al. Rigorous 3D modeling of confocal microscopy on 2D surface topographies. Meas. Sci. Technol., 32, 094010(2021).
[23] J. Coupland et al. Coherence scanning interferometry: linear theory of surface measurement. Appl. Opt., 52, 3662-3670(2013).
[24] P. de Groot, X. Colonna de Lega. Fourier optics modeling of interference microscopes. J. Opt. Soc. Am. A, 37, B1-B10(2020).
[25] R. Su, R. Leach. Physics-based virtual coherence scanning interferometer for surface measurement. Light Adv. Manuf., 2, 120-135(2021).
[26] P. Lehmann, M. Künne, T. Pahl. Analysis of interference microscopy in the spatial frequency domain. J. Phys. Photonics, 3, 014006(2021).
[27] W. Xie. Transfer characteristics of white light interferometers and confocal microscopes(2017).
[28] J. Coupland, J. Lobera. Holography, tomography and 3D microscopy as linear filtering operations. Meas. Sci. Technol., 19, 074012(2008).
[29] N. Nikolaev, J. Petzing, J. Coupland. Focus variation microscope: linear theory and surface tilt sensitivity. Appl. Opt., 55, 3555-3565(2016).
[30] P. Lehmann, T. Pahl. Three-dimensional transfer function of optical microscopes in reflection mode. J. Microsc., 284, 45-55(2021).
[31] C. Sheppard. Imaging of random surfaces and inverse scattering in the Kirchoff approximation. Waves Random Media, 8, 53(1998).
[32] H. Hooshmand et al. Comparison of approximate methods for modelling coherence scanning interferometry. Proc. SPIE, 12619, 126190R(2023).
[33] P. Lehmann, S. Hagemeier, T. Pahl. Three-dimensional transfer functions of interference microscopes. Metrology, 1, 122-141(2021).
[34] P. Lehmann, T. Pahl, J. Riebeling. Universal Fourier optics model for virtual coherence scanning interferometers. Proc. SPIE, 12619, 126190O(2023).
[35] P. de Groot. The instrument transfer function for optical measurements of surface topography. J. Phys. Photonics, 3, 024004(2021).
[36] M. Totzeck. Numerical simulation of high-NA quantitative polarization microscopy and corresponding near-fields. Optik, 112, 399-406(2001).
[37] B. Richards, E. Wolf. Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system. Proc. R. Soc. A, 253, 358-379(1959).
[38] P. Beckmann, A. Spizzichino. The Scattering of Electromagnetic Waves from Rough Surfaces(1987).
[39] W. Singer, M. Totzeck, H. Gross. Handbook of Optical Systems. Volume 2: Physical Image Formation(2006).
[40] J. A. Ogilvy, H. M. Merklinger. Theory of Wave Scattering from Random Rough Surfaces(1991).
[41] J. Ogilvy. Wave scattering from rough surfaces. Rep. Progr. Phys., 50, 1553(1987).
[42] E. Thorsos. The validity of the Kirchhoff approximation for rough surface scattering using a Gaussian roughness spectrum. J. Acoust. Soc. Am., 83, 78-92(1988).
[43] E. Thorsos, D. Jackson. Studies of scattering theory using numerical methods. Waves Random Media, 1, S165(1991).
[44] T. Pahl et al. Two-dimensional modeling of systematic surface height deviations in optical interference microscopy based on rigorous near field calculation. J. Mod. Opt., 67, 963-973(2020).
[45] Rubert & Co Ltd., (accessed 30 January 2023).
[46] Cantilever Tap190Al-G(2023).
[47] S. Hagemeier, M. Schake, P. Lehmann. Sensor characterization by comparative measurements using a multi-sensor measuring system. J. Sens. Sens. Syst., 8, 111-121(2019).
[48] W. Werner, K. Glantschnig, C. Ambrosch-Draxl. Optical constants and inelastic electron-scattering data for 17 elemental metals. J. Phys. Chem. Ref. Data, 38, 1013-1092(2009).
[49] F. Cheng et al. Epitaxial growth of atomically smooth aluminum on silicon and its intrinsic optical properties. ACS Nano, 10, 9852-9860(2016).
[50] I. Abdulhalim. Spatial and temporal coherence effects in interference microscopy and full-field optical coherence tomography. Ann. Phys., 524, 787-804(2012).
[51] S. Tereschenko. Digitale Analyse periodischer und transienter Messsignale anhand von Beispielen aus der optischen Präzisionsmesstechnik(2018).
[52] R. Leach, R. Leach. Some common terms and definitions. Optical Measurement of Surface Topography, 15-22(2011).
[53] R. Shannon, J. Wyant, K. Creath, J. Wyant. Basic wavefront aberration theory for optical metrology. Applied Optics and Optical Engineering, 1-54(1992).
[54] P.-I. Schneider et al. Reconstructing phase aberrations for high-precision dimensional microscopy. Proc. SPIE, 12137, 121370I(2022).
[55] Geometrical product specification (GPS)—surface texture: profile method—terms, definitions and surface texture parameters(2010).
[56] VirtualLab Fusion.