• Advanced Photonics Nexus
  • Vol. 3, Issue 1, 016013 (2024)
Tobias Pahl*, Felix Rosenthal, Johannes Breidenbach, Corvin Danzglock..., Sebastian Hagemeier, Xin Xu, Marco Künne and Peter Lehmann|Show fewer author(s)
Author Affiliations
  • University of Kassel, Faculty of Electrical Engineering and Computer Science, Measurement Technology Group, Kassel, Germany
  • show less
    DOI: 10.1117/1.APN.3.1.016013 Cite this Article Set citation alerts
    Tobias Pahl, Felix Rosenthal, Johannes Breidenbach, Corvin Danzglock, Sebastian Hagemeier, Xin Xu, Marco Künne, Peter Lehmann, "Electromagnetic modeling of interference, confocal, and focus variation microscopy," Adv. Photon. Nexus 3, 016013 (2024) Copy Citation Text show less
    References

    [1] P. de Groot, R. Leach. Coherence scanning interferometry. Optical Measurement of Surface Topography, 187-208(2011).

    [2] P. Lehmann, S. Tereschenko, W. Xie. Fundamental aspects of resolution and precision in vertical scanning white-light interferometry. Surf. Topogr. Metrol. Properties, 4, 024004(2016).

    [3] T. R. Corle, G. S. Kino. Confocal Scanning Optical Microscopy and Related Imaging Systems(1996).

    [4] R. Artigas, R. Leach. Imaging confocal microscopy. Optical Measurement of Surface Topography, 237-286(2011).

    [5] R. Danzl, F. Helmli, S. Scherer. Focus variation—a robust technology for high resolution optical 3D surface metrology. Strojniski Vestnik/J. Mech. Eng., 57, 245-256(2011).

    [6] L. Newton et al. Areal topography measurement of metal additive surfaces using focus variation microscopy. Addit. Manuf., 25, 365-389(2019).

    [7] R. Leach. Optical Measurement of Surface Topography(2011).

    [8] D. Malacara, J. Schmit, K. Creath, J. Wyant. Surface profilers, multiple wavelength, and white light interferometry. Optical Shop Testing, 667-755(2007).

    [9] A. Harasaki, J. Wyant. Fringe modulation skewing effect in white-light vertical scanning interferometry. Appl. Opt., 39, 2101-2106(2000).

    [10] P. de Groot et al. Determination of fringe order in white-light interference microscopy. Appl. Opt., 41, 4571-4578(2002).

    [11] M. Conroy, J. Armstrong. A comparison of surface metrology techniques. J. Phys. Conf. Ser., 13, 458(2005).

    [12] F. Mauch et al. Improved signal model for confocal sensors accounting for object depending artifacts. Opt. Express, 20, 19936-19945(2012).

    [13] C. Giusca et al. Practical estimation of measurement noise and flatness deviation on focus variation microscopes. CIRP Ann., 63, 545-548(2014).

    [14] M. Rahlves, B. Roth, E. Reithmeier. Systematic errors on curved microstructures caused by aberrations in confocal surface metrology. Opt. Express, 23, 9640-9648(2015).

    [15] W. Xie et al. Signal modeling in low coherence interference microscopy on example of rectangular grating. Opt. Express, 24, 14283-14300(2016).

    [16] A. Thompson et al. Topography of selectively laser melted surfaces: a comparison of different measurement methods. CIRP Ann., 66, 543-546(2017).

    [17] X. Xu, S. Hagemeier, P. Lehmann. Outlier elimination in rough surface profilometry with focus variation microscopy. Metrology, 2, 263-273(2022).

    [18] S. Hagemeier. Comparison and investigation of various topography sensors using a multisensor measuring system(2022).

    [19] T. Pahl et al. Vectorial 3D modeling of coherence scanning interferometry. Proc. SPIE, 11783, 117830G(2021).

    [20] T. Pahl, J. Breidenbach, P. Lehmann. Quasi-analytical and rigorous modeling of interference microscopy, 10013(2022).

    [21] T. Pahl et al. 3D modeling of coherence scanning interferometry on 2D surfaces using FEM. Opt. Express, 28, 39807-39826(2020).

    [22] T. Pahl et al. Rigorous 3D modeling of confocal microscopy on 2D surface topographies. Meas. Sci. Technol., 32, 094010(2021).

    [23] J. Coupland et al. Coherence scanning interferometry: linear theory of surface measurement. Appl. Opt., 52, 3662-3670(2013).

    [24] P. de Groot, X. Colonna de Lega. Fourier optics modeling of interference microscopes. J. Opt. Soc. Am. A, 37, B1-B10(2020).

    [25] R. Su, R. Leach. Physics-based virtual coherence scanning interferometer for surface measurement. Light Adv. Manuf., 2, 120-135(2021).

    [26] P. Lehmann, M. Künne, T. Pahl. Analysis of interference microscopy in the spatial frequency domain. J. Phys. Photonics, 3, 014006(2021).

    [27] W. Xie. Transfer characteristics of white light interferometers and confocal microscopes(2017).

    [28] J. Coupland, J. Lobera. Holography, tomography and 3D microscopy as linear filtering operations. Meas. Sci. Technol., 19, 074012(2008).

    [29] N. Nikolaev, J. Petzing, J. Coupland. Focus variation microscope: linear theory and surface tilt sensitivity. Appl. Opt., 55, 3555-3565(2016).

    [30] P. Lehmann, T. Pahl. Three-dimensional transfer function of optical microscopes in reflection mode. J. Microsc., 284, 45-55(2021).

    [31] C. Sheppard. Imaging of random surfaces and inverse scattering in the Kirchoff approximation. Waves Random Media, 8, 53(1998).

    [32] H. Hooshmand et al. Comparison of approximate methods for modelling coherence scanning interferometry. Proc. SPIE, 12619, 126190R(2023).

    [33] P. Lehmann, S. Hagemeier, T. Pahl. Three-dimensional transfer functions of interference microscopes. Metrology, 1, 122-141(2021).

    [34] P. Lehmann, T. Pahl, J. Riebeling. Universal Fourier optics model for virtual coherence scanning interferometers. Proc. SPIE, 12619, 126190O(2023).

    [35] P. de Groot. The instrument transfer function for optical measurements of surface topography. J. Phys. Photonics, 3, 024004(2021).

    [36] M. Totzeck. Numerical simulation of high-NA quantitative polarization microscopy and corresponding near-fields. Optik, 112, 399-406(2001).

    [37] B. Richards, E. Wolf. Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system. Proc. R. Soc. A, 253, 358-379(1959).

    [38] P. Beckmann, A. Spizzichino. The Scattering of Electromagnetic Waves from Rough Surfaces(1987).

    [39] W. Singer, M. Totzeck, H. Gross. Handbook of Optical Systems. Volume 2: Physical Image Formation(2006).

    [40] J. A. Ogilvy, H. M. Merklinger. Theory of Wave Scattering from Random Rough Surfaces(1991).

    [41] J. Ogilvy. Wave scattering from rough surfaces. Rep. Progr. Phys., 50, 1553(1987).

    [42] E. Thorsos. The validity of the Kirchhoff approximation for rough surface scattering using a Gaussian roughness spectrum. J. Acoust. Soc. Am., 83, 78-92(1988).

    [43] E. Thorsos, D. Jackson. Studies of scattering theory using numerical methods. Waves Random Media, 1, S165(1991).

    [44] T. Pahl et al. Two-dimensional modeling of systematic surface height deviations in optical interference microscopy based on rigorous near field calculation. J. Mod. Opt., 67, 963-973(2020).

    [45] Rubert & Co Ltd., (accessed 30 January 2023).

    [46] Cantilever Tap190Al-G(2023).

    [47] S. Hagemeier, M. Schake, P. Lehmann. Sensor characterization by comparative measurements using a multi-sensor measuring system. J. Sens. Sens. Syst., 8, 111-121(2019).

    [48] W. Werner, K. Glantschnig, C. Ambrosch-Draxl. Optical constants and inelastic electron-scattering data for 17 elemental metals. J. Phys. Chem. Ref. Data, 38, 1013-1092(2009).

    [49] F. Cheng et al. Epitaxial growth of atomically smooth aluminum on silicon and its intrinsic optical properties. ACS Nano, 10, 9852-9860(2016).

    [50] I. Abdulhalim. Spatial and temporal coherence effects in interference microscopy and full-field optical coherence tomography. Ann. Phys., 524, 787-804(2012).

    [51] S. Tereschenko. Digitale Analyse periodischer und transienter Messsignale anhand von Beispielen aus der optischen Präzisionsmesstechnik(2018).

    [52] R. Leach, R. Leach. Some common terms and definitions. Optical Measurement of Surface Topography, 15-22(2011).

    [53] R. Shannon, J. Wyant, K. Creath, J. Wyant. Basic wavefront aberration theory for optical metrology. Applied Optics and Optical Engineering, 1-54(1992).

    [54] P.-I. Schneider et al. Reconstructing phase aberrations for high-precision dimensional microscopy. Proc. SPIE, 12137, 121370I(2022).

    [55] Geometrical product specification (GPS)—surface texture: profile method—terms, definitions and surface texture parameters(2010).

    [56] VirtualLab Fusion.

    Tobias Pahl, Felix Rosenthal, Johannes Breidenbach, Corvin Danzglock, Sebastian Hagemeier, Xin Xu, Marco Künne, Peter Lehmann, "Electromagnetic modeling of interference, confocal, and focus variation microscopy," Adv. Photon. Nexus 3, 016013 (2024)
    Download Citation