• Acta Physica Sinica
  • Vol. 68, Issue 24, 246801-1 (2019)
Beng Jiang1, Si-Liang Chen1, Xiao-Lei Cui4, Zi-Ting Hu1, Yue Li1, Xiao-Zheng Zhang3, Kang-Jing Wu1, Wen-Zhen Wang3, Zui-Min Jiang2, Feng Hong1, Zhong-Quan Ma1, Lei Zhao1, Fei Xu1、2、*, Run Xu3、*, and Yi-Qiang Zhan4、*
Author Affiliations
  • 1SHU-SolarE R&D Laboratory, Shanghai Key Laboratory of High Temperature Superconductors, Department of Physics, Shanghai University, Shanghai 200444, China
  • 2State Key Laboratory of Surface Physics and Department of Physics, Key Laboratory of Micro and Nano Photonic Structure (Ministry of Education), Fudan University, Shanghai 200433, China
  • 3Department of Electronic Information Materials, Shanghai University, Shanghai 200444, China
  • 4School of Information Science and Technology, Fudan University, Shanghai 200433, China
  • show less
    DOI: 10.7498/aps.68.20191238 Cite this Article
    Beng Jiang, Si-Liang Chen, Xiao-Lei Cui, Zi-Ting Hu, Yue Li, Xiao-Zheng Zhang, Kang-Jing Wu, Wen-Zhen Wang, Zui-Min Jiang, Feng Hong, Zhong-Quan Ma, Lei Zhao, Fei Xu, Run Xu, Yi-Qiang Zhan. Temperature-dependent photoluminescence in hybrid iodine-based perovskites film[J]. Acta Physica Sinica, 2019, 68(24): 246801-1 Copy Citation Text show less
    (a) The XRD of hybrid anion mixed perovskite MAPb(BrxI1–x)3; (b) the diffraction intensity and plane distance obtained at different molar ratios of Br– in lattice plane of (110) and (220); (c) the XPS spectra of Pb and I element inperovskite film for different Br–ratios.(a) 阴离子混合型钙钛矿MAPb(BrxI1–x)3的XRD谱; (b) (110)和(220)衍射峰强和晶面间距d随Br–比例x的变化; (c) 不同Br–比例的钙钛矿薄膜中Pb和I元素XPS谱
    Fig. 1. (a) The XRD of hybrid anion mixed perovskite MAPb(BrxI1–x)3; (b) the diffraction intensity and plane distance obtained at different molar ratios of Br in lattice plane of (110) and (220); (c) the XPS spectra of Pb and I element inperovskite film for different Brratios. (a) 阴离子混合型钙钛矿MAPb(BrxI1–x)3的XRD谱; (b) (110)和(220)衍射峰强和晶面间距d随Br比例x的变化; (c) 不同Br比例的钙钛矿薄膜中Pb和I元素XPS谱
    Hybrid anion mixed perovskite in room temperature: (a) Absorption coefficient change with incident photon energy; (b) the optical bandgap obtained by Tauc equation; (c) the change of Eg using Eq. (1) fitting.室温下的阴离子混合型钙钛矿(a)吸收系数与入射光子能量的关系; (b) Tauc方差分析光学带隙; (c) 由(1)式拟合带隙Eg的变化
    Fig. 2. Hybrid anion mixed perovskite in room temperature: (a) Absorption coefficient change with incident photon energy; (b) the optical bandgap obtained by Tauc equation; (c) the change of Eg using Eq. (1) fitting. 室温下的阴离子混合型钙钛矿  (a)吸收系数与入射光子能量的关系; (b) Tauc方差分析光学带隙; (c) 由(1)式拟合带隙Eg的变化
    Photoluminescence of hybrid anion mixed perovskite MAPb(BrxI1–x)3 at room temperature: (a) The photoluminescence spectra; (b) the change of peak position and intensity.室温下阴离子混合型钙钛矿MAPb(BrxI1–x)3 PL图谱 (a)归一化PL谱; (b)峰位和峰强与Br比例x的关系
    Fig. 3. Photoluminescence of hybrid anion mixed perovskite MAPb(BrxI1–x)3 at room temperature: (a) The photoluminescence spectra; (b) the change of peak position and intensity. 室温下阴离子混合型钙钛矿MAPb(BrxI1–x)3 PL图谱 (a)归一化PL谱; (b)峰位和峰强与Br比例x的关系
    Temperature-dependent photoluminescence of hybrid anion mixed perovskites MAPb(BrxI1–x)3 in visible region: (a) The photoluminescence spectra; (b) the projection mapping of photoluminescence; (c) the excitonic binding energy extract by Arrhenius equation fitting; (d) the intensity, peak position and full width at half maximum of photoluminescence.阴离子混合型钙钛矿MAPb(BrxI1–x)3可见波段变温PL谱 (a) PL谱; (b) PL投影图; (c)通过Arrhenius拟合提取激子结合能; (d) PL的强度、峰位和半高宽
    Fig. 4. Temperature-dependent photoluminescence of hybrid anion mixed perovskites MAPb(BrxI1–x)3 in visible region: (a) The photoluminescence spectra; (b) the projection mapping of photoluminescence; (c) the excitonic binding energy extract by Arrhenius equation fitting; (d) the intensity, peak position and full width at half maximum of photoluminescence. 阴离子混合型钙钛矿MAPb(BrxI1–x)3可见波段变温PL谱 (a) PL谱; (b) PL投影图; (c)通过Arrhenius拟合提取激子结合能; (d) PL的强度、峰位和半高宽
    Photoluminescence dependent-temperature of mix cation (Cs0.05(FA0.85MA0.15)0.95)Pb(Br0.15I0.85)3 measured at temperature range from 10 K to 350 K: (a) The photoluminescence spectra; (b) the projection mapping of normalize photoluminescence; (c) the peak position and intensity evolution with temperature.混合阳离子(Cs0.05(FA0.85MA0.15)0.95)Pb(Br0.15I0.85)3 薄膜 (a) PL谱; (b)归一化变温PL投影图; (c) 可见波段发光峰位和强度随温度的变化
    Fig. 5. Photoluminescence dependent-temperature of mix cation (Cs0.05(FA0.85MA0.15)0.95)Pb(Br0.15I0.85)3 measured at temperature range from 10 K to 350 K: (a) The photoluminescence spectra; (b) the projection mapping of normalize photoluminescence; (c) the peak position and intensity evolution with temperature. 混合阳离子(Cs0.05(FA0.85MA0.15)0.95)Pb(Br0.15I0.85)3 薄膜 (a) PL谱; (b)归一化变温PL投影图; (c) 可见波段发光峰位和强度随温度的变化
    Pb/I原子比样品化学式XPS测得成分
    26.42/73.58$ MA{\rm{Pb}}{\left( {{{\rm{I}}_{0.9833}}{\rm{B}}{{\rm{r}}_{0.0167}}} \right)_3}$$ MA{\rm{Pb}}{\left( {{{\rm{I}}_{0.97}}{\rm{B}}{{\rm{r}}_{0.03}}} \right)_3}$
    26.84/73.16$ MA{\rm{Pb}}{\left( {{{\rm{I}}_{0.9667}}{\rm{B}}{{\rm{r}}_{0.0333}}} \right)_3}$$ MA{\rm{Pb}}{\left( {{{\rm{I}}_{0.9467}}{\rm{B}}{{\rm{r}}_{0.0533}}} \right)_3}$
    27/73$ MA{\rm{Pb}}{\left( {{{\rm{I}}_{0.9333}}{\rm{B}}{{\rm{r}}_{0.0667}}} \right)_3}$$ MA{\rm{Pb}}{\left( {{{\rm{I}}_{0.9367}}{\rm{B}}{{\rm{r}}_{0.0633}}} \right)_3}$
    27.55/72.45$ MA{\rm{Pb}}{\left( {{{\rm{I}}_{0.9}}{\rm{B}}{{\rm{r}}_{0.1}}} \right)_3}$$ MA{\rm{Pb}}{\left( {{{\rm{I}}_{0.9133}}{\rm{B}}{{\rm{r}}_{0.0667}}} \right)_3}$
    Table 1.

    Chemical formula of sample compare with XPS.

    样品化学式与XPS结果对比

    Beng Jiang, Si-Liang Chen, Xiao-Lei Cui, Zi-Ting Hu, Yue Li, Xiao-Zheng Zhang, Kang-Jing Wu, Wen-Zhen Wang, Zui-Min Jiang, Feng Hong, Zhong-Quan Ma, Lei Zhao, Fei Xu, Run Xu, Yi-Qiang Zhan. Temperature-dependent photoluminescence in hybrid iodine-based perovskites film[J]. Acta Physica Sinica, 2019, 68(24): 246801-1
    Download Citation