[1] M. V. Berry. The singularities of light: intensity, phase, polarisation. Light Sci. Appl., 12, 238(2023).
[2] D. F. Vanderwerf, D. F. Vanderwerf. Light as an electromagnetic wave. The Story of Light Science: From Early Theories to Today’s Extraordinary Applications, 13-21(2017).
[3] R. Luo, J. Zwinkels. Light, electromagnetic spectrum. Encyclopedia of Color Science and Technology, 1-8(2014).
[4] C. He, H. He, J. Chang. Polarisation optics for biomedical and clinical applications: a review. Light Sci. Appl., 10, 194(2021).
[5] H. Zhang, Z. Ni, C. E. Stevens. Cavity-enhanced linear dichroism in a van der Waals antiferromagnet. Nat. Photonics, 16, 311-317(2022).
[6] T. S. Metzger, H. Batchu, A. Kumar. Optical activity and spin polarization: the surface effect. J. Am. Chem. Soc., 145, 3972-3977(2023).
[7] A. V. Karnik, A. V. Karnik, M. Hasan, M. Hasan. Chapter 4—Chiroptical properties: origin and applications. Stereochemistry, 95-127(2021).
[8] A. Albersdörfer, G. Elender, G. Mathe. High resolution imaging microellipsometry of soft surfaces at 3 μm lateral and 5 Å normal resolution. Appl. Phys. Lett., 72, 2930-2932(1998).
[9] K. Fujita, K. Fujii, L. Zhang. Investigating stability of Si sphere surface layer in ambient–vacuum cyclic measurements using ellipsometry. IEEE Trans. Instrum. Meas., 71, 1-9(2022).
[10] H. W. Thompson. Infra-red spectroscopy and chemical industry. Nature, 177, 915-917(1956).
[11] N. B. Colthup, L. H. Daly, S. E. Wiberley. Introduction to Infrared and Raman Spectroscopy(1990).
[12] M. Leutenegger, E. Martin Williams, P. Harbi. Real-time full field laser Doppler imaging. Biomed. Opt. Express, 2, 1470-1477(2011).
[13] P. M. Kraus, M. Zürch, S. K. Cushing. The ultrafast X-ray spectroscopic revolution in chemical dynamics. Nat. Rev. Chem., 2, 82-94(2018).
[14] K. Ramasesha, S. R. Leone, D. M. Neumark. Real-time probing of electron dynamics using attosecond time-resolved spectroscopy. Annu. Rev. Phys. Chem., 67, 41-63(2016).
[15] J. Mun, M. Kim, Y. Yang. Electromagnetic chirality: from fundamentals to nontraditional chiroptical phenomena. Light Sci. Appl., 9, 139(2020).
[16] R. S. Gurjar, V. Backman, L. T. Perelman. Imaging human epithelial properties with polarized light scattering spectroscopy. Nat. Med., 7, 1245-1248(2001).
[17] S. L. Jacques. Optical properties of biological tissues: a review. Phys. Med. Biol., 58, R37(2013).
[18] Z. Chunmin, W. Haiying, L. Jie. Fourier transform hyperspectral imaging polarimeter for remote sensing. Opt. Eng., 50, 066201(2011).
[19] L. Rossi, J. Berzosa-Molina, J. M. Desert. Spectropolarimetry as a tool for understanding the diversity of planetary atmospheres. Exp. Astron., 54, 1187-1196(2022).
[20] A. García Muñoz. On mapping exoplanet atmospheres with high-dispersion spectro-polarimetry: some model predictions. Astrophys. J., 854, 108(2018).
[21] M.-G. Kim. Spectroscopic imaging ellipsometry for two-dimensional thin film thickness measurement using a digital light processing projector. Meas. Sci. Technol., 33, 095016(2022).
[22] E. Garcia-Caurel, A. De Martino, B. Drévillon. Spectroscopic Mueller polarimeter based on liquid crystal devices. Thin Solid Films, 455-456, 120-123(2004).
[23] R. M. A. Azzam. Arrangement of four photodetectors for measuring the state of polarization of light. Opt. Lett., 10, 309-311(1985).
[24] A. Peinado, A. Turpin, A. Lizana. Conical refraction as a tool for polarization metrology. Opt. Lett., 38, 4100-4103(2013).
[25] J. D. Perreault. Triple Wollaston-prism complete-Stokes imaging polarimeter. Opt. Lett., 38, 3874-3877(2013).
[26] A. del Río-Lima, A. Gutiérrez-Valdés, C. Mojica-Casique. Homemade open-source full-Stokes polarimeter based on division of amplitude. Appl. Opt., 63, 7177-7187(2024).
[27] E. Compain, B. Drevillon. Broadband division-of-amplitude polarimeter based on uncoated prisms. Appl. Opt., 37, 5938-5944(1998).
[28] W. W. Parson, C. Burda. Modern Optical Spectroscopy(2007).
[29] W. Liu, J. Liao, Y. Yu. High-efficient and high-accurate integrated division-of-time polarimeter. APL Photonics, 6, 071302(2021).
[30] X. Meng, J. Li, H. Song. Full-Stokes Fourier-transform imaging spectropolarimeter using a time-division polarization modulator. Appl. Opt., 53, 5275-5282(2014).
[31] S. Alali, T. Yang, I. A. Vitkin. Rapid time-gated polarimetric Stokes imaging using photoelastic modulators. Opt. Lett., 38, 2997-3000(2013).
[32] Y. Ni, C. Chen, S. Wen. Computational spectropolarimetry with a tunable liquid crystal metasurface. eLight, 2, 23(2022).
[33] A. S. Alenin, J. S. Tyo. Generalized channeled polarimetry. J. Opt. Soc. Am. A, 31, 1013-1022(2014).
[34] I. J. Vaughn, A. S. Alenin, J. S. Tyo. Channeled spatio–temporal Stokes polarimeters. Opt. Lett., 43, 2768-2771(2018).
[35] J. Chen, X. Li, J. Jirigalantu. White-light channeled imaging polarimeter using Savart plates and a polarization Sagnac interferometer. Opt. Express, 31, 18177-18189(2023).
[36] J. S. Tyo, O. G. Rodríguez-Herrera, C. Flannery. Scene-adaptive spatially channeled imaging Mueller polarimeter. Opt. Express, 31, 23678-23692(2023).
[37] M. W. Kudenov, M. J. Escuti, E. L. Dereniak. White-light channeled imaging polarimeter using broadband polarization gratings. Appl. Opt., 50, 2283-2293(2011).
[38] K. Oka, T. Kato. Spectroscopic polarimetry with a channeled spectrum. Opt. Lett., 24, 1475-1477(1999).
[39] C. Huang, H. Liu, H. Zhang. Learnable sparse dictionary compressed sensing for channeled spectropolarimeter. Opt. Express, 32, 20915-20930(2024).
[40] Z. Zhao, Y. Li, K. Liu. Derivation and calibration of spectral response for a channeled spectropolarimeter. Opt. Express, 31, 25763-25780(2023).
[41] J. Hu, X. Chen, W. Chen. Frequency properties of channeled spectropolarimetry: an information theory perspective. Opt. Express, 32, 3735-3750(2024).
[42] D. S. Sabatke, A. M. Locke, E. L. Dereniak. Linear operator theory of channeled spectropolarimetry. J. Opt. Soc. Am. A, 22, 1567-1576(2005).
[43] J. Dong, H. Zhou. Polarimeters from bulky optics to integrated optics: a review. Opt. Commun., 465, 125598(2020).
[44] X. Chen, H. Gu, J. Liu. Advanced Mueller matrix ellipsometry: instrumentation and emerging applications. Sci. China Technol. Sci., 65, 2007-2030(2022).
[45] J. P. Balthasar Mueller, K. Leosson, F. Capasso. Ultracompact metasurface in-line polarimeter. Optica, 3, 42-47(2016).
[46] A. Pors, M. G. Nielsen, S. I. Bozhevolnyi. Plasmonic metagratings for simultaneous determination of Stokes parameters. Optica, 2, 716-723(2015).
[47] X. Zhang, S. Yang, W. Yue. Direct polarization measurement using a multiplexed Pancharatnam-Berry metahologram. Optica, 6, 1190-1198(2019).
[48] C. Chen, X. Xiao, X. Ye. Neural network assisted high-spatial-resolution polarimetry with non-interleaved chiral metasurfaces. Light Sci. Appl., 12, 288(2023).
[49] W. T. Chen, P. Török, M. R. Foreman. Integrated plasmonic metasurfaces for spectropolarimetry. Nanotechnology, 27, 224002(2016).
[50] F. Ding, A. Pors, Y. Chen. Beam-size-invariant spectropolarimeters using gap-plasmon metasurfaces. ACS Photonics, 4, 943-949(2017).
[51] A. Basiri, X. Chen, J. Bai. Nature-inspired chiral metasurfaces for circular polarization detection and full-Stokes polarimetric measurements. Light Sci. Appl., 8, 78(2019).
[52] K. Lee, H. Yun, S. Mun. Ultracompact broadband plasmonic polarimeter. Laser Photonics Rev., 12, 1700297(2018).
[53] J. Chen, C. Wan, Q. Zhan. Vectorial optical fields: recent advances and future prospects. Sci. Bull., 63, 54-74(2018).
[54] Q. Zhan. Properties of circularly polarized vortex beams. Opt. Lett., 31, 867-869(2006).
[55] X. Yuan, S. Yu, H. P. Urbach. Optical vortices and vector beams. Photonics Res., 4, OVB1(2016).
[56] E. Hasman, G. Biener, A. Niv. Space-variant polarization manipulation. Progress in Optics, 215-289(2005).
[57] Q. Zhan. Trapping metallic Rayleigh particles with radial polarization. Opt. Express, 12, 3377-3382(2004).
[58] Y. Xue, Y. Wang, S. Zhou. Focus shaping and optical manipulation using highly focused second-order full Poincaré beam. J. Opt. Soc. Am. A, 35, 953-958(2018).
[59] A. E. Willner, H. Huang, Y. Yan. Optical communications using orbital angular momentum beams. Adv. Opt. Photonics, 7, 66-106(2015).
[60] C. Gao, F. Wang, X. Wen. Dual vortex retarder Mueller matrix ellipsometry. Opt. Lasers Eng., 166, 107564(2023).
[61] C. Gao, B. Lei. Spatially modulated polarimetry based on a vortex retarder and Fourier analysis. Chin. Opt. Lett., 19, 021201(2021).
[62] C. Gao, B. Lei. Spatially polarization-modulated ellipsometry based on the vectorial optical field and image processing. Appl. Opt., 59, 5377-5384(2020).
[63] F. Gori. Measuring Stokes parameters by means of a polarization grating. Opt. Lett., 24, 584-586(1999).
[64] C. He, J. Lin, J. Chang. Full Poincaré polarimetry enabled through physical inference. Optica, 9, 1109-1114(2022).
[65] T. Wakayama, T. Higashiguchi, H. Oikawa. Determination of the polarization states of an arbitrary polarized terahertz beam: vectorial vortex analysis. Sci. Rep., 5, 9416(2015).
[66] S. Tripathi, K. C. Toussaint. Rapid Mueller matrix polarimetry based on parallelized polarization state generation and detection. Opt. Express, 17, 21396-21407(2009).
[67] J. C. Suárez Bermejo, J. C. González de Sande, M. Santarsiero. Mueller matrix polarimetry using full Poincaré beams. Opt. Lasers Eng., 122, 134-141(2019).
[68] J. C. González de Sande, M. Santarsiero, G. Piquero. Spirally polarized beams for polarimetry measurements of deterministic and homogeneous samples. Opt. Lasers Eng., 91, 97-105(2017).
[69] W. Toshitaka, O. Yukitoshi, Y. Toru. Axisymmetrical Mueller matrix polarimeter. Proc. SPIE, 7461, 74610M(2009).
[70] J. Chang, N. Zeng, H. He. Single-shot spatially modulated Stokes polarimeter based on a GRIN lens. Opt. Lett., 39, 2656-2659(2014).
[71] H. Suzuki, A. Emoto, N. Furuso. Polarization information landscapes expanded from single-shot images of ring-like diffraction patterns. OSA Contin., 4, 2796-2804(2021).
[72] R. Orange kedem, N. Opatovski, D. Xiao. Near index matching enables solid diffractive optical element fabrication via additive manufacturing. Light Sci. Appl., 12, 222(2023).
[73] R. Orange Kedem, E. Nehme, L. E. Weiss. 3D printable diffractive optical elements by liquid immersion. Nat. Commun., 12, 3067(2021).
[74] L. Stern, D. G. Bopp, S. A. Schima. Chip-scale atomic diffractive optical elements. Nat. Commun., 10, 3156(2019).
[75] C. Gao. Phase shift document and its visualization algorithms(2025).
[76] C. Gao. Phase shift and transmission of DOE(2025).
[77] F. Wang, X. Cao, C. Gao. Algorithms for calculating polarization direction based on spatial modulation of vector optical field. Acta Phys. Sin., 72, 010201(2023).
[78] C. Gao, F. Wang, X. Wen. Error calibration method for a vortex retarder based spatially modulated polarimeter. Measurement, 212, 112631(2023).
[79] A. Blanco, A. Blanco, G. Blanco, G. Blanco. Chapter 4—Carbohydrates. Medical Biochemistry, 73-97(2017).
[80] J. Moreno, J. Moreno, R. Peinado, R. Peinado. Sugars: structure and classification. Enological Chemistry, 77-93(2012).
[81] F. Wang, B. Lei, C. Gao. Method for determination of optical rotatory dispersion curve by using a polarization axis finder. Appl. Opt., 61, 1965-1971(2022).
[82] Y. Wang, L. Chen, Y. Chen. Research of mutarotation of D-glucose solution. Phys. Exp., 32, 45-46(2021).
[83] . Cyc structures of monosaccharides(2022).
[84] E. Castiglioni, S. Abbate, G. Longhi. Experimental methods for measuring optical rotatory dispersion: survey and outlook. Chirality, 23, 711-716(2011).
[85] H. Tu, P. Yang, Z. Lin. Time-dependent enantiodivergent synthesis via sequential kinetic resolution. Nat. Chem., 12, 838-844(2020).