• Bulletin of the Chinese Ceramic Society
  • Vol. 41, Issue 3, 1053 (2022)
WANG Xuejing*, MA Ruixiao, XU Juan, and ZHANG Yanhui
Author Affiliations
  • [in Chinese]
  • show less
    DOI: Cite this Article
    WANG Xuejing, MA Ruixiao, XU Juan, ZHANG Yanhui. Research Progress of Defective Semiconductor Used in Photocatalytic Nitrogen Fixation[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(3): 1053 Copy Citation Text show less
    References

    [1] GORBANEV Y, VERVLOESSEM E, NIKIFOROV A, et al. Nitrogen fixation with water vapor by nonequilibrium plasma: toward sustainable ammonia production[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(7): 2996-3004.

    [5] SHEN Z K, YUAN Y J, WANG P, et al. Few-layer black phosphorus nanosheets: a metal-free cocatalyst for photocatalytic nitrogen fixation[J]. ACS Applied Materials & Interfaces, 2020, 12(15): 17343-17352.

    [8] LIU Q Y, WANG H D, TANG R, et al. Rutile TiO2 nanoparticles with oxygen vacancy for photocatalytic nitrogen fixation[J]. ACS Applied Nano Materials, 2021, 4(9): 8674-8679.

    [10] FENG Y L, ZHANG Z S, ZHAO K, et al. Photocatalytic nitrogen fixation: oxygen vacancy modified novel micro-nanosheet structure Bi2O2CO3 with band gap engineering[J]. Journal of Colloid and Interface Science, 2021, 583: 499-509.

    [11] FANG Y, CAO Y, TAN B H, et al. Oxygen and titanium vacancies in a BiOBr/MXene-Ti3C2 composite for boosting photocatalytic N2 fixation[J]. ACS Applied Materials & Interfaces, 2021, 13(36): 42624-42634.

    [12] HUANG Y C, LI K S, LIN Y, et al. Cover feature: enhanced efficiency of electron-hole separation in Bi2O2CO3 for photocatalysis via acid treatment[J]. ChemCatChem, 2018, 10(9): 1982-1987.

    [14] SAITO W, HAYASHI K, HUANG Z C, et al. Enhancing the thermoelectric performance of Mg2Sn single crystals via point defect engineering and Sb doping[J]. ACS Applied Materials & Interfaces, 2020, 12(52): 57888-57897.

    [15] ZHANG Y H, DAI R Y, HU S R. Study of the role of oxygen vacancies as active sites in reduced graphene oxide-modified TiO2[J]. Physical Chemistry Chemical Physics, 2017, 19(10): 7307-7315.

    [16] ZHANG Y H, GUO H X, WENG W, et al. The surface plasmon resonance, thermal, support and size effect induced photocatalytic activity enhancement of Au/reduced graphene oxide for selective oxidation of benzylic alcohols[J]. Physical Chemistry Chemical Physics, 2017, 19(46): 31389-31398.

    [17] ZHOU H, ZHANG Y H. Efficient thermal- and photocatalysts made of Au nanoparticles on MgAl-layered double hydroxides for energy and environmental applications[J]. Physical Chemistry Chemical Physics, 2019, 21(39): 21798-21805.

    [18] MA R X, XIE L Y, HUANG Y X, et al. A facile approach to synthesize CdS-attapulgite as a photocatalyst for reduction reactions in water[J]. RSC Advances, 2021, 11(43): 27003-27010.

    [21] LI K, SUN C, CHEN Z Q, et al. Fe-carbon dots enhance the photocatalytic nitrogen fixation activity of TiO2@CN heterojunction[J]. Chemical Engineering Journal, 2022, 429: 132440.

    [23] SCHRAUZER G N, GUTH T D. Photolysis of water and photoreduction of nitrogen on titanium dioxide[J]. Journal of the American Chemical Society, 1977, 99(22): 7189-7193.

    [25] WANG J P, LIN W, RAN Y, et al. Nanotubular TiO2 with remedied defects for photocatalytic nitrogen fixation[J]. The Journal of Physical Chemistry C, 2020, 124(2): 1253-1259.

    [26] HU X L, ZHANG W J, YONG Y W, et al. One-step synthesis of iodine-doped g-C3N4 with enhanced photocatalytic nitrogen fixation performance[J]. Applied Surface Science, 2020, 510: 145413.

    [27] SHIRAISHI Y, SHIOTA S, KOFUJI Y, et al. Nitrogen fixation with water on carbon-nitride-based metal-free photocatalysts with 0.1% solar-to-ammonia energy conversion efficiency[J]. ACS Applied Energy Materials, 2018, 1(8): 4169-4177.

    [29] HU X L, YONG Y W, XU Y, et al. Enhanced photocatalytic nitrogen fixation of AgI modified g-C3N4 with nitrogen vacancy synthesized by an in situ decomposition-thermal polymerization method[J]. Applied Surface Science, 2020, 531: 147348.

    [30] LI H, SHANG J, AI Z H, et al. Efficient visible light nitrogen fixation with BiOBr nanosheets of oxygen vacancies on the exposed{001}facets[J]. Journal of the American Chemical Society, 2015, 137(19): 6393-6399.

    [31] WANG B H, SUN B, CHEN L, et al. Photocatalytic nitrogen reduction reaction over two-dimensional Cs3Bi2Br9-CdS van der waals heterostructures by external control strategies[J]. The Journal of Physical Chemistry C, 2021, 125(24): 13212-13224.

    [32] LI F R, WANG T, LI Y J, et al. Heteropoly blue/protonation-defective graphitic carbon nitride heterojunction for the photo-driven nitrogen reduction reaction[J]. Inorganic Chemistry, 2021, 60(8): 5829-5839.

    [33] WANG H M, ZHAO R, QIN J Q, et al. MIL-100(Fe)/Ti3C2 MXene as a Schottky catalyst with enhanced photocatalytic oxidation for nitrogen fixation activities[J]. ACS Applied Materials & Interfaces, 2019, 11(47): 44249-44262.

    [34] LI Y S, TI M R, ZHAO D X, et al. Facile synthesis of nitrogen-vacancy pothole-rich few-layer g-C3N4 for photocatalytic nitrogen fixation into nitrate and ammonia[J]. Journal of Alloys and Compounds, 2021, 870: 159298.

    [36] LI P S, ZHOU Z A, WANG Q, et al. Visible-light-driven nitrogen fixation catalyzed by Bi5O7Br nanostructures: enhanced performance by oxygen vacancies[J]. Journal of the American Chemical Society, 2020, 142(28): 12430-12439.

    [37] LI G, YANG W Y, GAO S, et al. Creation of rich oxygen vacancies in bismuth molybdate nanosheets to boost the photocatalytic nitrogen fixation performance under visible light illumination[J]. Chemical Engineering Journal, 2021, 404: 127115.

    [38] HUANG Y C, LONG B, TANG M N, et al. Bifunctional catalytic material: an ultrastable and high-performance surface defect CeO2 nanosheets for formaldehyde thermal oxidation and photocatalytic oxidation[J]. Applied Catalysis B: Environmental, 2016, 181: 779-787.

    [39] SONG M Y, WANG L J, LI J X, et al. Defect density modulation of La2TiO5: an effective method to suppress electron-hole recombination and improve photocatalytic nitrogen fixation[J]. Journal of Colloid and Interface Science, 2021, 602: 748-755.

    [40] LIU L, LIU J Q, SUN K L, et al. Novel phosphorus-doped Bi2WO6 monolayer with oxygen vacancies for superior photocatalytic water detoxication and nitrogen fixation performance[J]. Chemical Engineering Journal, 2021, 411: 128629.

    [41] ZENG H, LIU L L, ZHANG D T, et al. Fe(III)-C3N4 hybrids photocatalyst for efficient visible-light driven nitrogen fixation[J]. Materials Chemistry and Physics, 2021, 258: 123830.

    [42] REN C J, ZHANG Y L, LI Y L, et al. Whether corrugated or planar vacancy graphene-like carbon nitride (g-C3N4) is more effective for nitrogen reduction reaction?[J]. The Journal of Physical Chemistry C, 2019, 123(28): 17296-17305.

    [43] ZHAO Z M, LONG Y, LUO S, et al. Metal-free C3N4 with plentiful nitrogen vacancy and increased specific surface area for electrocatalytic nitrogen reduction[J]. Journal of Energy Chemistry, 2021, 60: 546-555.

    [44] XUE Y J, KONG X K, GUO Y C, et al. Synthesis of porous few-layer carbon nitride with excellent photocatalytic nitrogen fixation[J]. Journal of Materiomics, 2020, 6(1): 128-137.

    [45] LIANG C, NIU H Y, GUO H, et al. Insight into photocatalytic nitrogen fixation on graphitic carbon nitride: defect-dopant strategy of nitrogen defect and boron dopant[J]. Chemical Engineering Journal, 2020, 396: 125395.

    [46] CHENG C C, WANG J N, GUO X S, et al. Thermal-assisted photocatalytic H2 production over sulfur vacancy-rich Co0.85Se/Mn0.3Cd0.7S nanorods under visible light[J]. Applied Surface Science, 2021, 557: 149812.

    [47] LI C, XU R Z, MA S X, et al. Sulfur vacancies in ultrathin cobalt sulfide nanoflowers enable boosted electrocatalytic activity of nitrogen reduction reaction[J]. Chemical Engineering Journal, 2021, 415: 129018.

    [48] ZHOU C, ZHU L, DENG L, et al. Efficient activation of peroxymonosulfate on CuS@MIL-101(Fe) spheres featured with abundant sulfur vacancies for coumarin degradation: performance and mechanisms[J]. Separation and Purification Technology, 2021, 276: 119404.

    [49] SUN B T, LIANG Z Q, QIAN Y Y, et al. Sulfur vacancy-rich O-doped 1T-MoS2 nanosheets for exceptional photocatalytic nitrogen fixation over CdS[J]. ACS Applied Materials & Interfaces, 2020, 12(6): 7257-7269.

    [50] HU S Z, LI Y M, LI F Y, et al. Construction of g-C3N4/Zn0.11Sn0.12Cd0.88S1.12 hybrid heterojunction catalyst with outstanding nitrogen photofixation performance induced by sulfur vacancies[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(4): 2269-2278.

    WANG Xuejing, MA Ruixiao, XU Juan, ZHANG Yanhui. Research Progress of Defective Semiconductor Used in Photocatalytic Nitrogen Fixation[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(3): 1053
    Download Citation