• Advanced Photonics
  • Vol. 7, Issue 1, 016004 (2025)
James Spall1,2,†, Xianxin Guo1,2,*, and Alexander I. Lvovsky1,2,*
Author Affiliations
  • 1University of Oxford, Clarendon Laboratory, Oxford, United Kingdom
  • 2Lumai Ltd., Wood Centre for Innovation, Oxford, United Kingdom
  • show less
    DOI: 10.1117/1.AP.7.1.016004 Cite this Article Set citation alerts
    James Spall, Xianxin Guo, Alexander I. Lvovsky, "Training neural networks with end-to-end optical backpropagation," Adv. Photon. 7, 016004 (2025) Copy Citation Text show less
    References

    [1] K. Roy, A. Jaiswal, P. Panda. Towards spike-based machine intelligence with neuromorphic computing. Nature, 575, 607-617(2019).

    [2] P. Yao et al. Fully hardware-implemented memristor convolutional neural network. Nature, 577, 641-646(2020).

    [3] X. Xu et al. 11 TOPS photonic convolutional accelerator for optical neural networks. Nature, 589, 44-51(2021).

    [4] J. Feldmann et al. Parallel convolutional processing using an integrated photonic tensor core. Nature, 589, 52-58(2021).

    [5] A. Sludds et al. Delocalized photonic deep learning on the internet’s edge. Science, 378, 270-276(2022).

    [6] X. Lin et al. All-optical machine learning using diffractive deep neural networks. Science, 361, 1004-1008(2018).

    [7] Y. Shen et al. Deep learning with coherent nanophotonic circuits. Nat. Photonics, 11, 441-446(2017).

    [8] B. J. Shastri et al. Photonics for artificial intelligence and neuromorphic computing. Nat. Photonics, 15, 102-114(2021).

    [9] J. Wu et al. Analog optical computing for artificial intelligence. Engineering, 10, 133-145(2022).

    [10] G. Wetzstein et al. Inference in artificial intelligence with deep optics and photonics. Nature, 588, 39-47(2020).

    [11] Y. LeCun, Y. Bengio, G. Hinton. Deep learning. Nature, 521, 436-444(2015).

    [12] J. Spall, X. Guo, A. I. Lvovsky. Hybrid training of optical neural networks. Optica, 9, 803-811(2022).

    [13] S. M. Buckley et al. Photonic online learning: a perspective. Nanophotonics, 12, 833-845(2023).

    [14] L. G. Wright et al. Deep physical neural networks trained with backpropagation. Nature, 601, 549-555(2022).

    [15] T. Zhou et al. Large-scale neuromorphic optoelectronic computing with a reconfigurable diffractive processing unit. Nat. Photonics, 15, 367-373(2021).

    [16] S. M. Tam et al. Learning on an analog VLSI neural network chip, 701-703(1990).

    [17] L. Mennel et al. Ultrafast machine vision with 2D material neural network image sensors. Nature, 579, 62-66(2020).

    [18] C. Li et al. Efficient and self-adaptive in-situ learning in multilayer memristor neural networks. Nat. Commun., 9, 2385(2018).

    [19] Z. Wang et al. In situ training of feed-forward and recurrent convolutional memristor networks. Nat. Mach. Intell., 1, 434-442(2019).

    [20] J. Feldmann et al. All-optical spiking neurosynaptic networks with self-learning capabilities. Nature, 569, 208-214(2019).

    [21] S. Bandyopadhyay et al. Single-chip photonic deep neural network with forward-only training. Nat. Photonics, 18, 1335-1343(2022).

    [22] M. J. Filipovich et al. Silicon photonic architecture for training deep neural networks with direct feedback alignment. Optica, 9, 1323-1332(2022).

    [23] S. Bartunov et al. Assessing the scalability of biologically-motivated deep learning algorithms and architectures, 9390-9400(2018).

    [24] T. W. Hughes et al. Training of photonic neural networks through in situ backpropagation and gradient measurement. Optica, 5, 864-871(2018).

    [25] S. Pai et al. Experimentally realized in situ backpropagation for deep learning in photonic neural networks. Science, 380, 398-404(2023).

    [26] X. Guo et al. Backpropagation through nonlinear units for the all-optical training of neural networks. Photonics Res., 9, B71-B80(2021).

    [27] K. Wagner, D. Psaltis. Multilayer optical learning networks. Appl. Opt., 26, 5061-5076(1987).

    [28] J. W. Goodman, A. Dias, L. Woody. Fully parallel, high-speed incoherent optical method for performing discrete Fourier transforms. Opt. Lett., 2, 1-3(1978).

    [29] J. Spall et al. Fully reconfigurable coherent optical vector–matrix multiplication. Opt. Lett., 45, 5752-5755(2020).

    [30] S. Ohno et al. Si microring resonator crossbar array for on-chip inference and training of the optical neural network. ACS Photonics, 9, 2614-2622(2022).

    [31] T. Zhou et al. In situ optical backpropagation training of diffractive optical neural networks. Photonics Res., 8, 940-953(2020).

    [32] R. W. Boyd. Nonlinear Optics(2020).

    [33] J. Wang et al. Saturable absorption in graphene-on-waveguide devices. Appl. Phys. Express, 12, 032003(2019).

    [34] A. E. Siegman. Gain-guided, index-antiguided fiber lasers. J. Opt. Soc. Am. B, 24, 1677-1682(2007).

    [35] V. Arrizón et al. Pixelated phase computer holograms for the accurate encoding of scalar complex fields. J. Opt. Soc. Am. A, 24, 3500-3507(2007).

    [36] J. Spall. Training neural networks with end-to-end optical backpropagation(2024).

    James Spall, Xianxin Guo, Alexander I. Lvovsky, "Training neural networks with end-to-end optical backpropagation," Adv. Photon. 7, 016004 (2025)
    Download Citation