• Journal of the Chinese Ceramic Society
  • Vol. 50, Issue 12, 3147 (2022)
PAN Xin1,2,*, ZHUANG Yixi2, MEI Lefu1, and XIE Rongjun2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.14062/j.issn.0454-5648.20220532 Cite this Article
    PAN Xin, ZHUANG Yixi, MEI Lefu, XIE Rongjun. Mechanism of Mechanoluminescencent Materials: Review, Progress and Challenges[J]. Journal of the Chinese Ceramic Society, 2022, 50(12): 3147 Copy Citation Text show less
    References

    [1] PUST P, SCHMIDT P J, SCHNICK W. A revolution in lighting[J]. Nat Mater, 2015, 14(5): 454-458.

    [2] FENG Ang, SMET P F. A review of mechanoluminescence in inorganic solids: Compounds, mechanisms, models and applications[J].Materials, 2018, 11(4): 484.

    [3] CHEN Bing, ZHANG Xin, WANG Feng. Expanding the toolbox of inorganic mechanoluminescence materials[J]. Accounts Mater Res,2021, 2(5): 364-373.

    [4] WANG Chunfeng, PENG Dengfeng, PAN Caofeng. Mechanoluminescence materials for advanced artificial skin[J]. Sci Bull, 2020, 65(14): 1147-1149.

    [5] ZHANG Juncheng, WANG Xusheng, MARRIOTT G, et al.Trap-controlled mechanoluminescent materials[J]. Prog Mater Sci,2019, 103: 678-742.

    [6] PENG Dengfeng, CHEN Bing, WANG Feng. Recent advances in doped mechanoluminescent phosphors[J]. Chempluschem, 2015,80(8): 1209-1215.

    [7] JHA P, CHANDRA B P. Survey of the literature on mechanoluminescence from 1605 to 2013[J]. Luminescence, 2014,29(8): 977-993.

    [8] CHEN Changjian, ZHUANG Yixi, LI Xinya, et al. Achieving remote stress and temperature dual-modal imaging by double-lanthanideactivated mechanoluminescent materials[J]. Adv Funct Mater, 2021,31(25): 2101567.

    [9] WANG Xiandi, PENG Dengfeng, HUANG Bolong, et al.Piezophotonic effect based on mechanoluminescent materials for advanced flexible optoelectronic applications[J]. Nano Energy, 2019,55: 389-400.

    [10] ZHUANG Yixi, XIE Rongjun. Mechanoluminescence rebrightening the prospects of stress sensing: A review[J]. Adv Mater, 2021, 33(50):2005925.

    [11] CHEN Changjian, ZHUANG Yixi, TU Dong, et al. Creating visibleto-near-infrared mechanoluminescence in mixed-anion compounds SrZn2S2O and SrZnSO[J]. Nano Energy, 2020, 68: 104329.

    [12] WANG Xiandi, ZHANG Hanlu, Yu Ruomeng, et al. Dynamic pressure mapping of personalized handwriting by a flexible sensor matrix based on the mechanoluminescence process[J]. Adv Mater, 2015,27(14): 2324-2331.

    [13] JEONG S M, SONG S, SEO H, et al. Battery-free, human-motionpowered light-emitting fabric: mechanoluminescent textile[J]. Adv Sustainable Syst, 2017, 1(12): 1700126.

    [14] ZHANG Juncheng, PAN Cong, ZHU Yifei, et al. Achieving thermo-mechano-opto-responsive bitemporal colorful luminescence via multiplexing of dual lanthanides in piezoelectric particles and its multidimensional anticounterfeiting[J]. Adv Mater, 2018, 30(49):1804644.

    [15] ZUO Yong, XU Xiaojie, TAO Xin, et al. A novel information storage and visual expression device based on mechanoluminescence[J]. J Mater Chem C, 2019, 7(14): 4020-4025.

    [16] DU Yangyang, JIANG Yue, SUN Tianying, et al. Mechanically excited multicolor luminescence in lanthanide ions[J]. Adv Mater,2019, 31(7): 1807062.

    [17] BüNZLI J G, WONG K. Lanthanide mechanoluminescence[J]. J Rare Earth, 2018, 36(1): 1-41.

    [18] XIONG Puxian, PENG Mingying, YANG Zhongmin. Near-infrared mechanoluminescence crystals: A review[J]. iScience, 2021, 24(1):101944.

    [19] XU Chaonan, WATANABE T, AKIYAMA M, et al. Direct view of stress distribution in solid by mechanoluminescence[J]. Appl Phys Lett, 1999, 74(17): 2414-2416.

    [20] WEI Xiaoyan, WANG Xiandi, KUANG Shuangyang, et al. Dynamic triboelectrification-induced electroluminescence and its use in visualized sensing[J]. Adv Mater, 2016, 28(31): 6656-6664.

    [21] XU Chaonan, WATANABE T, AKIYAMA M, et al. Artificial skin to sense mechanical stress by visible light emission[J]. Appl Phys Lett,1999, 74(9): 1236-1238.

    [22] XU Chaonan, WATANABE T, AKIYAMA M, et al. Development of strongly adherent triboluminescent zinc sulfide films on glass substrates by ion plating and annealing[J]. J Am Ceram Soc, 1999,82(9): 2342-2344.

    [23] XU Chaonan, WATANABE T, AKIYAMA M, et al. Preparation and characteristics of highly triboluminescent ZnS film[J]. Mater Res Bull,1999, 34(10-11): 1491-1500.

    [24] TERASAWA Y, XU Chaonan, YAMADA H, et al. Near infrared mechanoluminescence from strontium aluminate doped with rare-earth ions[C]//. Proceedings of the IOP Conference Series: Materials Science and Engineering, IOP Publishing, 2011, 18(21): 212013.

    [25] XU Chaonan, ZHENG Xuguang, WATANABE T, et al. Enhancement of adhesion and triboluminescence of ZnS: Mn films by annealing technique[J]. Thin Solid Films, 1999, 352(1-2): 273-277.

    [26] AKIYAMA M, XU Chaonan, MATSUI H, et al. Recovery phenomenon of mechanoluminescence from Ca2Al2SiO7:Ce by irradiation with ultraviolet light[J]. Appl Phys Lett, 1999, 75(17):2548-2550.

    [27] WALTON A J. Triboluminescence[J]. Adv Phys, 1977, 26(6):887-948.

    [28] CARPENTER M A, HOWARD C J, ANDREW M J, et al. Elastic anomalies due to structural phase transitions in mechanoluminescent SrAl2O4:Eu[J]. J Appl Phys, 2010, 107(1): 13505.

    [29] VAN DEN EECKHOUT K, SMET P F, POELMAN D. Persistent luminescence in Eu2+-doped compounds: A review[J]. Materials, 2010,3(4): 2536-2566.

    [30] SMET P F, VIANA B, TANABE S, et al. Feature issue introduction: Persistent and photostimulable phosphors--An established research field with clear challenges ahead[J]. Opt Mater Express, 2016, 6(4):1414-1419.

    [31] CHANDRA V K, CHANDRA B P, JHA P. Models for intrinsic and extrinsic elastico and plastico-mechanoluminescence of solids[J]. J Lumin, 2013, 138: 267-280.

    [32] ZHANG Juncheng, LONG Yunze, YAN Xu, et al. Creating recoverable mechanoluminescence in piezoelectric calcium niobates through Pr3+ doping[J]. Chem Mater, 2016, 28(11): 4052-4057.

    [33] TU Dong, XU Chaonan, YOSHIDA A, et al. LiNbO3:Pr3+: A multipiezo material with simultaneous piezoelectricity and sensitive piezoluminescence[J]. Adv Mater, 2017, 29(22): 1606914.

    [34] JIANG Hailin, XIONG Chenwei, LONG Siwei, et al. A novel versatile instrument for combined studies of persistent luminescence, thermoluminescence, and mechanoluminescence in micro-scale[J]. Rev Sci Instrum, 2020, 91(11): 113103.

    [35] XIONG Puxian, PENG Mingying, QIN Kexin, et al. Visible to near-infrared persistent luminescence and mechanoluminescence from Pr3+-doped LiGa5O8 for energy storage and bioimaging[J]. Adv Opt Mater, 2019, 7(24): 1901107.

    [36] BAI Yongqing, WANG Fu, ZHANG Liqiang, et al. Interfacial triboelectrification-modulated self-recoverable and thermally stable mechanoluminescence in mixed-anion compounds[J]. Nano Energy,2022, 96: 107075.

    [37] LIN Feiyan, LI Xinya, CHEN Changjian, et al. Modeling polyhedron distortion for mechanoluminescence in Mixed-anion compounds RE2O2S:Ln3[J]. Chem Mater, 2022, 34(11): 5311-5319.

    [38] TU Shaobo, MIZOHATA M, SHENG Guan, et al. Photoluminescent ferroelectric LiNbO3 crystals grown from MXenes[J]. Adv Funct Mater, 2020, 30(47): 1909843.

    [39] ZHOU Jinyu, GU Yan, LU Jiyuan, et al. An ultra-strong non-pre-irradiation and self-recoverable mechanoluminescent elastomer[J]. Chem Eng J, 2020, 390: 124473.

    [40] MATSUO H, IKEDA K, HATA S, et al. Phase transformation behavior and pseudoelastic deformation in SrAl2O4[J]. J Alloy Compd, 2013,577: 507-516.

    [41] CHANDRA B P, SHRIVASTAVA K K. Dependence of mechanoluminescence in rochelle-salt crystals on the charge-produced during their fracture[J]. J Phys Chem Solids, 1978, 39(9): 939-940.

    [42] SAKAI K, KOGA T, IMAI Y, et al. Observation of mechanically induced luminescence from microparticles[J]. Phys Chem Chem Phys,2006, 8(24): 2819-2822.

    [43] MIURA T, CHINI M, BENNEWITZ R. Forces, charges, and light emission during the rupture of adhesive contacts[J]. J Appl Phys, 2007,102(10): 460-613.

    [44] HARVEY E N. The luminescence of adhesive tape[J]. Science, 1939,89(2316): 460-461.

    [45] PAN Xin, MEI Lefu, WANG Yuhua, et al. Activators lattice migration strategy customized for tunable luminescence of Ce3+ doped β-Ca3(PO4)2[J]. Chem Eng J, 2022, 446: 137271.

    [46] PAN Xin, MEI Lefu, ZHUANG Yixi, et al. Anti-defect engineering toward high luminescent efficiency in whitlockite phosphors[J]. Chem Eng J, 2022, 434: 134652.

    [47] ZHOU Hui, DU Yide, WU Chen, et al. Understanding the mechanoluminescent mechanisms of manganese doped zinc sulfide based on load effects[J]. J Lumin, 2018, 203: 683-688.

    [48] WEDGWOOD T. III. Experiments and observations on the production of light from different bodies, by heat and by attrition[J]. Phil Trans R Soc, 1792, 82: 28-47.

    [49] WICK F G. An experimental study of the triboluminescence of certain natural crystals and synthetically prepared materials[J]. J Opt Soc Am,1937, 27(8): 275-285.

    [50] BR?UNLICH P. Comment on the initial-rise method for determining trap depths[J]. J Appl Phys, 1967, 38(6): 2516-2519.

    [51] YACOBI B G, HOLT D B. Cathodoluminescence scanning electron microscopy of semiconductors[J]. J Appl Phys, 1986, 59(4): R1-R24.

    [52] BULANYI M F, KLIMENKO V I, KOVALENKO A V, et al. Defect structure and luminescence behavior of ZnS: Mn2+ crystals[J]. Inorg Mater, 2003, 39(5): 436-440.

    [53] CHANDRA B P, KALIA V, DATT S C. Crystalloluminescence: A new tool to determine the critical size of a crystal nucleus[J]. J Phys D Appl Phys, 2000, 18(12): L189-L193.

    [54] WIEDEMANN E, SCHMIDT G C. Ueber Luminescenz von festen K?rpern und festen L?sungen[J]. Annalen Phys, 1895, 292(10):201-254.

    [55] KRICKA L J, STROEBEL J, STANLEY P E. Triboluminescence:1968-1998[J]. Luminescence, 1999, 14(4): 215-220.

    [56] SWEETING L M. Triboluminescence with and without air[J]. Chem Mater, 2001, 13(3): 854-870.

    [57] SAGE I, BADCOCK R, HUMBERSTONE L, et al. Triboluminescent damage sensors[J]. Smart Mater Struct, 1999, 8(4): 504-510.

    [58] CHANDRA B P, CHANDRA V K, JHA P. Elasticomechanoluminescence of thermoluminescent crystals[J]. Defect and Diffusion Forum, 2014, 347: 139-177.

    [59] TIWARI G, BRAHME N, SHARMA R, et al. Fractomechanoluminescence and thermoluminescence properties of UV and γ-irradiated Ca2Al2SiO7: Ce3+ phosphor[J]. Luminescence, 2016,31(3): 793-801.

    [60] CHANDRA B P, CHANDRA V K, JHA P. Models for intrinsic and extrinsic elastico and plastico-mechanoluminescence of solids[J]. J Lumin, 2013, 138: 267-280.

    [61] XU Chaonan, ZHENG Xuguang, AKIYAMA M, et al. Dynamic visualization of stress distribution by mechanoluminescence image[J].Appl Phys Lett, 2000, 76(2): 179-181.

    [62] MA Zhidong, ZHOU Jinyu, ZHANG Jiachi, et al. Mechanics-induced triple-mode anticounterfeiting and moving tactile sensing by simultaneously utilizing instantaneous and persistent mechanoluminescence[J]. Mater Horiz, 2019, 6(10): 2003-2008.

    [63] ZHANG Juncheng, LONG Yunze, YAN Xu, et al. Creating recoverable mechanoluminescence in piezoelectric calcium niobates through Pr3+ doping[J]. Chem Mater, 2016, 28(11): 4052-4057.

    [64] XIE Yujun, LI Zhen. Triboluminescence: Recalling interest and new aspects[J]. Chem, 2018, 4(5): 943-971.

    [65] MOON JEONG S, SONG S, LEE S, et al. Mechanically driven light-generator with high durability[J]. Appl Phys Lett, 2013, 102(5):51110.

    [66] CHANDRA B P, CHANDRA V K, JHA P, et al. Fractomechanoluminescence and mechanics of fracture of solids[J]. J Lumin,2012, 132(8): 2012-2022.

    [67] SAHU A K, KADUKAR M R, CHOWDHARY P S, et al. Experimental and theoretical study of mechanoluminescence and lyoluminescence of Li3PO4: RE (RE= Dy and Tb) phosphors[J]. Luminescence, 2014, 29(8): 1082-1094.

    [68] CHANDRA B P, BAGRI A K, CHANDRA V K, et al.Mechanoluminescence response to the plastic flow of coloured alkali halide crystals[J]. J Lumin, 2010, 130(2): 309-314.

    [69] SU Qiang, LI Chengyu, WANG Jing. Some interesting phenomena in the study of rare earth long lasting phosphors[J]. Opt Mater, 2014,36(11): 1894-1900.

    [70] CHANDRA V K, CHANDRA B P. Dynamics of the mechanoluminescence induced by elastic deformation of persistent luminescent crystals[J]. J Lumin, 2012, 132(3): 858-869.

    [71] INCEL A, EMIRDAG-EANES M, MCMILLEN C D, et al.Integration of triboluminescent EuD4TEA crystals to transparent polymers: Impact sensor application[J]. Acs Appl Mater Inter, 2017,9(7): 6488-6496.

    [72] JEONG S M, SONG S, SEO H, et al. Battery-free,human-motion-powered light-emitting fabric: mechanoluminescent textile[J]. Adv Sustain Systems, 2017, 1(12): 1700126.

    [73] PARK H, KIM S, LEE J H, et al. Self-powered motion-driven triboelectric electroluminescence textile system[J]. Acs Appl Mater Inter, 2019, 11(5): 5200-5207.

    [74] SMET P F, VIANA B, TANABE S, et al. Feature issue introduction:Persistent and photostimulable phosphors--An established research field with clear challenges ahead[J]. Opt Mater Express, 2016, 6(4):1414-1419.

    [75] WANG Sihong, XIE Yannan, NIU Simiao, et al. Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes[J].Adv Mater, 2014, 26(18): 2818-2824.

    [76] FAN Xinhua, ZHANG Juncheng, ZHANG Min, et al. Piezoluminescence from ferroelectric Ca3Ti2O7: Pr3+ long-persistent phosphor[J]. Opt Express, 2017, 25(13): 14238-14246.

    [77] KIM J S, KIBBLE K, KWON Y N, et al. Rate-equation model for the loading-rate-dependent mechanoluminescence of SrAl2O4: Eu2+, Dy3[J].Opt Lett, 2009, 34(13): 1915-1917.

    [78] CHANDRA B P, CHANDRA V K, JHA P. Microscopic theory of elastico-mechanoluminescent smart materials[J]. Appl Phys Lett,2014, 104(3): 31102.

    [79] CHANDRA B P, CHANDRA V K, JHA P. Piezoelectrically-induced trap-depth reduction model of elastico-mechanoluminescent materials[J]. Physica B: Condensed Matter, 2015, 461: 38-48.

    [80] SOHN K, PARK W B, TIMILSINA S, et al. Mechanoluminescence of SrAl 2O4: Eu2+, Dy3+ under cyclic loading[J]. Opt Lett, 2014, 39(6):1410-1413.

    [81] CHEN Reuven. Apparent stretched-exponential luminescence decay in crystalline solids[J]. J Lumin, 2003, 102: 510-518.

    [82] SOHN K S, CHO M Y, KIM M, et al. A smart load-sensing system using standardized mechano-luminescence measurement[J]. Opt Express, 2015, 23(5): 6073-6082.

    [83] CHANDRA V K, CHANDRA B P, JHA P. Strong luminescence induced by elastic deformation of piezoelectric crystals[J]. Appl Phys Lett, 2013, 102(24): 241105.

    [84] CHEN Yan, ZHANG Yang, KARNAUSHENKO D, et al. Addressable and color-tunable piezophotonic light-emitting stripes[J]. Adv Mater,2017, 29(19): 1605165.

    [85] WONG M, CHEN Li, BAI Gongxun, et al. Temporal and remote tuning of piezophotonic-effect-induced luminescence and color gamut via modulating magnetic field[J]. Adv Mater, 2017, 29(43): 1701945.

    [86] LANG J M, DREGER Z A, DRICKAMER H G. The effect of pressure on the luminescence of ZnS and ZnxCd1?xS doped with Cu+, Cl-, and Al3+[J]. J Solid State Chem, 1993, 106(1): 144-149.

    [87] HUANG Bolong, PENG Dengfeng, PAN Caofeng. “Energy relay center” for doped mechanoluminescence materials: A case study on Cu-doped and Mn-doped CaZnOS[J]. Phys Chem Chem Phys, 2017,19(2): 1190-1208.

    [88] JOOS J J, LEJAEGHERE K, KORTHOUT K, et al. Charge transfer induced energy storage in CaZnOS:Mn-insight from experimental and computational spectroscopy[J]. Phys Chem Chem Phys, 2017, 19(13):9075-9085.

    [89] WANG Xusheng, XU Chaonan, YAMADA H, et al. Electromechano optical conversions in Pr3+-doped BaTiO3-CaTiO3 ceramics[J]. Adv Mater, 2005, 17(10): 1254-1258.

    [90] CHANDRA B P. Mechanoluminescence induced by elastic deformation of coloured alkali halide crystals using pressure steps[J]. J Lumin, 2008, 128(7): 1217-1224.

    [91] TIWARI R, DUBEY V, CHANDRA B P, et al. Exact model for the elastico mechanoluminescence of II-VI phosphors[J]. Mater Phys Mech, 2014, 19(1): 25-38.

    [92] SASAKURA H, KOBAYASHI H, TANAKA S, et al. The dependences of electroluminescent characteristics of ZnS: Mn thin films upon their device parameters[J]. J Appl Phys, 1981, 52(11):6901-6906.

    [93] LIN Shaopeng, XIONG Chenwei, MA Decai, et al. Persistent luminescence found in Mg2+ and Pr3+ co-doped LiNbO3 single crystal[J]. J Mater Chem C, 2018, 6(37): 10067-10072.

    [94] WANG Xusheng, YAMADA H, XU Chaonan. Large electrostriction near the solubility limit in BaTiO3-CaTiO3 ceramics[J]. Appl Phys Lett, 2005, 86(2): 22905.

    [95] CHEN Changjian, ZHUANG Yixi, TU Dong, et al. Creating visible-to-near-infrared mechanoluminescence in mixed-anion compounds SrZn2S2O and SrZnSO[J]. Nano Energy, 2020, 68:104329.

    [96] CHEN Changjian, ZHUANG Yixi, LI Xinya, et al. Achieving remote stress and temperature dual-modal imaging by double-lanthanideactivated mechanoluminescent materials[J]. Adv Funct Mater, 2021,31(25): 2101567.

    [97] WANG Yanze, CHEN Bing, ZHANG Xin, et al. Doubly doped BaZnOS microcrystals for multicolor luminescence switching[J]. Adv Opt Mater, 2022, 10(7): 2102430.

    [98] QIAN Xin, CAI Zheren, SU Meng, et al. Printable Skin-driven mechanoluminescence devices via nanodoped matrix modification[J].Adv Mater, 2018, 30(25): 1800291.

    [99] WEI Xiaoyan, LIU Leipeng, WANG Hailu, et al. High-intensity triboelectrification-induced electroluminescence by microsized contacts for self-powered display and illumination[J]. Adv Mater Interfaces, 2018, 5(4): 1701063.

    [100] LI Jun, XU Chaonan, TU Dong, et al. Tailoring bandgap and trap distribution via Si or Ge substitution for Sn to improve mechanoluminescence in Sr3Sn2O7: Sm3+ layered perovskite oxide[J]. Acta Mater, 2018, 145: 462-469.

    [101] SU Min, LI Penghui, ZHENG Shenghui, et al. Largely enhanced elastico?mechanoluminescence of CaZnOS: Mn2+ by co-doping with Nd3+ ions[J]. J Lumin, 2020, 217: 116777.

    [102] PENG Dengfeng, JIANG Yue, HUANG Bolong, et al. A ZnS/CaZnOS heterojunction for efficient mechanical-to-optical energy conversion by conduction band offset[J]. Adv Mater, 2020, 32(16): 1907747.

    [103] WANG Xiandi, QUE Miaoling, CHEN Mengxiao, et al. Full dynamic-range pressure sensor matrix based on optical and electrical dual-mode sensing[J]. Adv Mater, 2017, 29(15): 1605817.

    [104] SHIN S W, OH J P, KIM E M, et al. Origin of mechanoluminescence from Cu-doped ZnS particles embedded in an elastomer film and its application in flexible electro-mechanoluminescent lighting devices[J]. Acs Appl Mater Inter, 2016, 8(2): 1098-1103.

    [105] MUKHINA M V, TRESBACK J, ONDRY J C, et al. Single-particle studies reveal a nanoscale mechanism for elastic, bright, and repeatable ZnS: Mn mechanoluminescence in a low-pressure regime[J]. Acs Nano, 2021, 15(3): 4115-4133.

    [106] WANG Kaojin, AMIN K, AN Zesheng, et al. Advanced functional polymer materials[J]. Mater Chem Front, 2020, 4(7): 1803-1915.

    PAN Xin, ZHUANG Yixi, MEI Lefu, XIE Rongjun. Mechanism of Mechanoluminescencent Materials: Review, Progress and Challenges[J]. Journal of the Chinese Ceramic Society, 2022, 50(12): 3147
    Download Citation