[1] Atwater H A. The promise of plasmonics[J]. Scientific American, 296, 56-63(2007).
[2] Fang N, Lee H, Sun C et al. Sub-diffraction-limited optical imaging with a silver superlens[J]. Science, 308, 534-537(2005).
[3] Luo X G. Plasmonic metalens for nanofabrication[J]. National Science Review, 5, 137-138(2018).
[4] Chang C, Chen W, Chen Y et al. Recent progress on two-dimensional materials[J]. Acta Physico-Chimica Sinica, 37, 2108017(2021).
[5] Wang J, Li Z C, Liu W N. Rigorous analysis and systematical design of double-layer metal superlens for improved subwavelength imaging mediated by surface plasmon polaritons[J]. Nanomaterials, 12, 3553(2022).
[6] Li Z, Wang C T, Kong W J et al. Broadband achromatic metasurface filter for apodization imaging in the visible[J]. Opto-Electronic Engineering, 48, 200466(2021).
[7] Zhou Y, Liang G F, Wen Z Q et al. Recent research progress in optical super-resolution planar meta-lenses[J]. Opto-Electronic Engineering, 48, 210399(2021).
[8] Wang C T, Zhao Z Y, Gao P et al. Surface plasmon lithography beyond the diffraction limit[J]. Chinese Science Bulletin, 61, 585-599(2016).
[9] Luo Y F, Kong W J, Zhao C W et al. Subdiffraction nanofocusing of circularly polarized light with a plasmonic cavity lens[J]. Journal of Materials Chemistry C, 7, 5615-5623(2019).
[10] Gao P, Pu M B, Ma X L et al. Plasmonic lithography for the fabrication of surface nanostructures with a feature size down to 9 nm[J]. Nanoscale, 12, 2415-2421(2020).
[11] Poddubny A, Iorsh I, Belov P et al. Hyperbolic metamaterials[J]. Nature Photonics, 7, 948-957(2013).
[12] Beliaev L Y, Takayama O, Melentiev P N et al. Photoluminescence control by hyperbolic metamaterials and metasurfaces: a review[J]. Opto-Electronic Advances, 4, 210031(2021).
[13] Zhou R J, Edwards C, Bryniarski C et al. White-light interferometric microscopy for wafer defect inspection[J]. Proceedings of SPIE, 9336, 93362P(2015).
[14] Liu H Y, Sun X Q, Wang X et al. The localized enhancement of surface plasmon standing waves interacting with single nanoparticles[J]. Plasmonics, 16, 2109-2116(2021).
[15] Sun X Q, Liu H Y, Jiang L W et al. Detecting a single nanoparticle by imaging the localized enhancement and interference of surface plasmon polaritons[J]. Optics Letters, 44, 5707-5710(2019).
[16] Wang B, Tanksalvala M, Zhang Z et al. A new metrology technique for defect inspection via coherent Fourier scatterometry using orbital angular momentum beams[J]. Proceedings of SPIE, 11611, 116110L(2021).
[17] Kolenov D, Urbach H P, Pereira S F. Effect of polarization in evanescent wave amplification for the enhancement of scattering of nanoparticles on surfaces[J]. OSA Continuum, 3, 742-758(2020).
[18] Kolenov D, Zadeh I E, Horsten R C et al. Direct detection of polystyrene equivalent nanoparticles with diameter of 21 nm (∼λ/19) using coherent Fourier scatterometry: erratum[J]. Optics Express, 30, 29841-29843(2022).
[19] Ai L F. Research on particle detection method on substrate surface based on scattered light dark field microscopy[D](2019).
[20] Lu M, Wang Z L, Zhang S Q et al. Polarization scattering characterization and discrimination principle of surface defects[J]. Acta Optica Sinica, 41, 1229001(2021).
[21] Chen X G, Wang C, Yang T J et al. Inline optical measurement and inspection for IC manufacturing: state-of-the-art, challenges, and perspectives[J]. Laser & Optoelectronics Progress, 59, 0922025(2022).
[22] Dong J T. Line-scanning laser scattering system for fast defect inspection of a large aperture surface[J]. Applied Optics, 56, 7089-7098(2017).
[23] Huang C Y, Chu R, Neskovic G. Rough film wafer sensitivity improvement using light scattering inspection system[C], 191-193(2013).
[25] Stover J C. Surface roughness measurements of curved surfaces by light scatter[J]. Optical Engineering, 21, 987-990(1982).
[26] Tang J F, Gu P F, Liu X[M]. Modern optical thin film technology(2006).
[27] Germer T A. Angular dependence and polarization of out-of-plane optical scattering from particulate contamination, subsurface defects, and surface microroughness[J]. Applied Optics, 36, 8798-8805(1997).
[28] Nahm K B, Wolfe W L. Light-scattering models for spheres on a conducting plane: comparison with experiment[J]. Applied Optics, 26, 2995-2999(1987).
[29] Zhang Y H, Yang Y Y, Li C et al. Defects evaluation system for spherical optical surfaces based on microscopic scattering dark-field imaging method[J]. Applied Optics, 55, 6162-6171(2016).
[30] Cho S, Lee J, Kim H et al. Super-contrast-enhanced darkfield imaging of nano objects through null ellipsometry[J]. Optics Letters, 43, 5701-5704(2018).
[31] Zhu J L, Liu J M, Xu T L et al. Optical wafer defect inspection at the 10 nm technology node and beyond[J]. International Journal of Extreme Manufacturing, 4, 032001(2022).