• Photonics Research
  • Vol. 12, Issue 6, 1294 (2024)
Shuhong Jiang1, Kun Huang1,2,3,*, Tingting Yu1, Jianan Fang1..., Ben Sun1, Yan Liang4, Qiang Hao4, E. Wu1,2, Ming Yan1,2 and Heping Zeng1,2,5,6,7|Show fewer author(s)
Author Affiliations
  • 1State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
  • 2Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing 401121, China
  • 3Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
  • 4School of Optical Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
  • 5Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
  • 6Guangyang Bay Laboratory, Chongqing Institute for Brain and Intelligence, Chongqing 400064, China
  • 7e-mail: hpzeng@phy.ecnu.edu.cn
  • show less
    DOI: 10.1364/PRJ.522253 Cite this Article Set citation alerts
    Shuhong Jiang, Kun Huang, Tingting Yu, Jianan Fang, Ben Sun, Yan Liang, Qiang Hao, E. Wu, Ming Yan, Heping Zeng, "High-resolution mid-infrared single-photon upconversion ranging," Photonics Res. 12, 1294 (2024) Copy Citation Text show less
    References

    [1] I. Kim, R. J. Martins, J. Jang. Nanophotonics for light detection and ranging technology. Nat. Nanotechnol., 16, 508-524(2021).

    [2] W. Kim, J. Jang, S. Han. Absolute laser ranging by time-of-flight measurement of ultrashort light pulses [Invited]. J. Opt. Soc. Am. A, 37, B27-B35(2020).

    [3] M. A. Steindorfer, G. Kirchner, F. Koidl. Daylight space debris laser ranging. Nat. Commun., 11, 3735(2020).

    [4] J. Riemensberger, A. Lukashchuk, M. Karpov. Massively parallel coherent laser ranging using a soliton microcomb. Nature, 581, 164-170(2020).

    [5] J. Ye. Absolute measurement of a long, arbitrary distance to less than an optical fringe. Opt. Lett., 29, 1153-1155(2004).

    [6] I. Coddington, W. C. Swann, L. Nenadovic. Rapid and precise absolute distance measurements at long range. Nat. Photonics, 3, 351-356(2009).

    [7] Y. Jiang, S. Karpf, B. Jalali. Time-stretch LiDAR as a spectrally scanned time-of-flight ranging camera. Nat. Photonics, 14, 14-18(2020).

    [8] Y. Na, C.-G. Jeon, C. Ahn. Ultrafast, sub-nanometre-precision and multifunctional time-of-flight detection. Nat. Photonics, 14, 355-360(2020).

    [9] J. Lee, Y.-J. Kim, K. Lee. Time-of-flight measurement with femtosecond light pulses. Nat. Photonics, 4, 716-720(2010).

    [10] A. M. Pawlikowska, A. Halimi, R. A. Lamb. Single-photon three-dimensional imaging at up to 10 kilometers range. Opt. Express, 25, 11919-11931(2017).

    [11] L. Kong, Q. Zhao, K. Zheng. Noise-tolerant single-photon imaging with a superconducting nanowire camera. Opt. Lett., 45, 6732-6735(2020).

    [12] Y. Liang, B. Xu, Q. Fei. Low-timing-jitter GHz-gated InGaAsInP single-photon avalanche photodiode for LIDAR. IEEE J. Sel. Top. Quantum Electron., 28, 3801807(2021).

    [13] M.-J. Sun, M. P. Edgar, G. M. Gibson. Single-pixel three-dimensional imaging with time-based depth resolution. Nat. Commun., 7, 12010(2016).

    [14] Y. Altmann, S. McLaughlin, M. J. Padgett. Quantum-inspired computational imaging. Science, 361, eaat2298(2018).

    [15] R. H. Hadfield, J. Leach, F. Fleming. Single-photon detection for long-range imaging and sensing. Optica, 10, 1124-1141(2023).

    [16] Z.-P. Li, J.-T. Ye, X. Huang. Single-photon imaging over 200 km. Optica, 8, 344-349(2021).

    [17] D. Faccio, A. Velten, G. Wetzstein. Non-line-of-sight imaging. Nat. Rev. Phys., 2, 318-327(2020).

    [18] L. Flannigan, L. Yoell, C. Xu. Mid-wave and long-wave infrared transmitters and detectors for optical satellite communications-a review. J. Opt., 24, 043002(2022).

    [19] A. Schliesser, N. Picqué, T. W. Hänsch. Mid-infrared frequency combs. Nat. Photonics, 6, 440-449(2012).

    [20] B. M. Walsh, H. R. Lee, N. P. Barnes. Mid infrared lasers for remote sensing applications. J. Lumin., 169, 400-405(2016).

    [21] W. Staehr, W. Lahmann, C. Weitkamp. Range-resolved differential absorption lidar: optimization of range and sensitivity. Appl. Opt., 24, 1950-1956(1985).

    [22] R. A. Alvarez, S. W. Pacala, J. J. Winebrake. Greater focus needed on methane leakage from natural gas infrastructure. Proc. Natl. Acad. Sci. USA, 109, 6435-6440(2012).

    [23] S. Lambert-Girard, M. Allard, M. Piché. Differential optical absorption spectroscopy lidar for mid-infrared gaseous measurements. Appl. Opt., 54, 1647-1656(2015).

    [24] S. Yu, Z. Zhang, H. Xia. Photon-counting distributed free-space spectroscopy. Light Sci. Appl., 10, 212(2021).

    [25] A. Rogalski, P. Martyniuk, M. Kopytko. Challenges of small-pixel infrared detectors: a review. Rep. Prog. Phys., 79, 046501(2016).

    [26] A. Blaikie, D. Miller, B. J. Alemán. A fast and sensitive room-temperature graphene nanomechanical bolometer. Nat. Commun., 10, 4726(2019).

    [27] P. Wang, H. Xia, Q. Li. Sensing infrared photons at room temperature: from bulk materials to atomic layers. Small, 15, 1904396(2019).

    [28] F. Marsili, F. Bellei, F. Najafi. Efficient single photon detection from 500 nm to 5 μm wavelength. Nano Lett., 12, 4799-4804(2012).

    [29] Q. Chen, R. Ge, L. Zhang. Mid-infrared single photon detector with superconductor Mo80Si20 nanowire. Sci. Bull., 66, 965-968(2021).

    [30] A. Barh, P. J. Rodrigo, L. Meng. Parametric upconversion imaging and its applications. Adv. Opt. Photon., 11, 952-1019(2019).

    [31] K. Huang, J. Fang, M. Yan. Wide-field mid-infrared single-photon upconversion imaging. Nat. Commun., 13, 1077(2022).

    [32] M. Mrejen, Y. Erlich, A. Levanon. Multicolor time-resolved upconversion imaging by adiabatic sum frequency conversion. Laser Photon. Rev., 14, 2000040(2020).

    [33] S.-K. Liao, H.-L. Yong, C. Liu. Long-distance free-space quantum key distribution in daylight towards inter-satellite communication. Nat. Photonics, 11, 509-513(2017).

    [34] M. Mancinelli, A. Trenti, S. Piccione. Mid-infrared coincidence measurements on twin photons at room temperature. Nat. Commun., 8, 15184(2017).

    [35] P. J. Rodrigo, L. Høgstedt, S. M. M. Friis. Room-temperature, high-SNR upconversion spectrometer in the 6–12 μm region. Laser Photon. Rev., 15, 2000443(2021).

    [36] T. Zheng, K. Huang, B. Sun. High-speed mid-infrared single-photon upconversion spectrometer. Laser Photon. Rev., 17, 2300149(2023).

    [37] Y. Zhao, S. Kusama, Y. Furutani. High-speed scanless entire bandwidth mid-infrared chemical imaging. Nat. Commun., 14, 3929(2023).

    [38] N. M. Israelsen, C. R. Petersen, A. Barh. Real-time high-resolution mid-infrared optical coherence tomography. Light Sci. Appl., 8, 11(2019).

    [39] S. Junaid, S. C. Kumar, M. Mathez. Video-rate, mid-infrared hyperspectral upconversion imaging. Optica, 6, 702-708(2019).

    [40] A. Shahverdi, Y. M. Sua, I. Dickson. Mode selective up-conversion detection for LIDAR applications. Opt. Express, 26, 15914-15923(2018).

    [41] P. Rehain, Y. M. Sua, S. Zhu. Noise-tolerant single photon sensitive three-dimensional imager. Nat. Commun., 11, 921(2020).

    [42] V. Ansari, J. M. Donohue, B. Brecht. Tailoring nonlinear processes for quantum optics with pulsed temporal-mode encodings. Optica, 5, 534-550(2018).

    [43] H. Xia, G. Shentu, M. Shangguan. Long-range micro-pulse aerosol lidar at 1.5 μm with an upconversion single-photon detector. Opt. Lett., 40, 1579-1582(2015).

    [44] W. Yue, T. Chen, W. Kong. Eye-safe aerosol and cloud lidar based on free-space intracavity upconversion detection. Remote Sens., 14, 2934(2022).

    [45] M. Widarsson, M. Henriksson, P. Mutter. High resolution and sensitivity up-conversion mid-infrared photon-counting LIDAR. Appl. Opt., 59, 2365-2369(2020).

    [46] M. Widarsson, M. Henriksson, L. Barrett. Room temperature photon-counting lidar at 3 μm. Appl. Opt., 61, 884-889(2022).

    [47] B. Wang, M.-Y. Zheng, J.-J. Han. Non-line-of-sight imaging with picosecond temporal resolution. Phys. Rev. Lett., 127, 053602(2021).

    [48] E. O. Potma, D. Knez, Y. Chen. Rapid chemically selective 3D imaging in the mid-infrared. Optica, 8, 995-1002(2021).

    [49] H. Zhang, S. Kumar, Y. M. Sua. Near-infrared 3D imaging with upconversion detection. Photon. Res., 10, 2760-2767(2022).

    [50] J. Fang, K. Huang, E. Wu. Mid-infrared single-photon 3D imaging. Light Sci. Appl., 12, 144(2023).

    [51] Y. Chen, C. Jiang, Y. Liu. A compact upconversion single-photon imager for full-range and accurate 3D imaging. IEEE Trans. Instrum. Meas., 72, 1502109(2023).

    [52] P. Täschler, A. Forrer, M. Bertrand. Asynchronous upconversion sampling of frequency modulated combs. Laser Photon. Rev., 17, 2200590(2023).

    [53] X. Dong, X. Zhou, J. Kang. Ultrafast time-stretch microscopy based on dual-comb asynchronous optical sampling. Opt. Lett., 43, 2118-2121(2018).

    [54] H. Zhang, H. Wei, X. Wu. Absolute distance measurement by dual-comb nonlinear asynchronous optical sampling. Opt. Express, 22, 6597-6604(2014).

    [55] X. Ren, B. Xu, Q. Fei. Single-photon counting laser ranging with optical frequency combs. IEEE Photon. Technol. Lett., 33, 27-30(2021).

    [56] K. Huang, Y. Wang, J. Fang. Mid-infrared photon counting and resolving via efficient frequency upconversion. Photon. Res., 9, 259-265(2021).

    [57] Y. Yang, Y. Jin, X. Xiang. Single-photon microwave photonics. Sci. Bull., 67, 700-706(2022).

    [58] J. Yang, X. Zhao, L. Zhang. Single-cavity dual-comb fiber lasers and their applications. Front. Phys., 10, 1070284(2023).

    Shuhong Jiang, Kun Huang, Tingting Yu, Jianan Fang, Ben Sun, Yan Liang, Qiang Hao, E. Wu, Ming Yan, Heping Zeng, "High-resolution mid-infrared single-photon upconversion ranging," Photonics Res. 12, 1294 (2024)
    Download Citation