• High Power Laser and Particle Beams
  • Vol. 34, Issue 12, 126001 (2022)
Kaiwen Qin1, Bo Yang1、2、*, Ziming Wang1, Yunchen Qian1, Haojie Liu1, and Yibao Liu1、2、*
Author Affiliations
  • 1Nuclear Science and Technology, East China University of Technology, Nanchang 330013, China
  • 2National Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, China
  • show less
    DOI: 10.11884/HPLPB202234.220156 Cite this Article
    Kaiwen Qin, Bo Yang, Ziming Wang, Yunchen Qian, Haojie Liu, Yibao Liu. Influence of different types of nuclear fuel on burnup performance of heat pipe cooled reactor[J]. High Power Laser and Particle Beams, 2022, 34(12): 126001 Copy Citation Text show less
    References

    [1] Yu Hongxing, Ma Yugao, Zhang Zhuohua, . Initiation and development of heat pipe cooled reactor[J]. Nuclear Power Engineering, 40, 1-8(2019).

    [2] Wang Ao, Shen Fengyang, Hu Gu, . A survey of heatpipe space nuclear reactor power supply[J]. Nuclear Techniques, 43, 060002(2020).

    [3] McClure P R, Poston D I, Dasari V R, et al. Design of megawatt power level heat pipe reacts[R]. Los Alamos: Los Alamos National Labaty, 2015.

    [4] Sterbentz J W, Werner J E, McKellar M G, et al. Special purpose nuclear react (5 MW) f reliable power at remote sites assessment rept[R]. Idaho Falls: Idaho National Labaty, 2017.

    [5] Sterbentz J W, Werner J E, Hummel A J, et al. Preliminary assessment of two alternative ce design concepts f the special purpose react[R]. Idaho Falls: Idaho National Labaty, 2018.

    [6] Qu Shen, Cao Liangzhi, Zheng Qi, . Development of high-temperature nuclear database and preliminary physical computation of a heat pipe reactor[J]. Modern Applied Physics, 8, 041202(2017).

    [7] Li Guanxing, Zhou Bangxin, Xiao Min, . Overall development strategy of China’s new-generation nuclear fuel[J]. Strategic Study of CAE, 21, 6-11(2019).

    [8] Fütterer M A, D’Agata E, Laurie M, et al. Next generation fuel irradiation capability in the High Flux Reactor Petten[J]. Journal of Nuclear Materials, 392, 184-191(2009).

    [9] Greenquist I, Powers J J. Sensitivity uncertainty of the IFR1 BISON benchmark[R]. Oak Ridge: Oak Ridge National Labaty, 2022.

    [10] IAEA. Thermophysical properties of materials f nuclear engineering: a tutial collection of data[M]. Vienna: IAEA, 2008: 92110.

    [11] Wang Kan, Li Zeguang, She Ding, et al. RMC—A Monte Carlo code for reactor core analysis[J]. Annals of Nuclear Energy, 82, 121-129(2015).

    [12] Liu Xiaobo, Hu Zehua. Monte Carlo calculation of critical benchmarking models for testing ENDF/B-VIII. 0 nuclear data[J]. High Power Laser and Particle Beams, 34, 026003(2022).

    [13] Hu Yun, Xu Mi. Development of metallic fuel for fast reactor[J]. Atomic Energy Science and Technology, 42, 810-815(2008).

    [14] Gao Yucui, Cao Liangzhi, Yang Yongwei, et al. Physical study of an ultra-long-life small modular fast reactor loaded with U-Pu-Zr fuel[J]. Annals of Nuclear Energy, 142, 107390(2020).

    [15] Luzzi L, Cammi A, Di Marcello V, et al. Application of the TRANSURANUS code for the fuel pin design process of the ALFRED reactor[J]. Nuclear Engineering and Design, 277, 173-187(2014).

    [16] Liu Bin, Wang Kai, Tu Jing, et al. Transmutation of minor actinides in the pressurized water reactors[J]. Annals of Nuclear Energy, 64, 86-92(2014).

    [17] Yang W S, Kim Y, Hill R N, et al. Long-lived fission product transmutation studies[J]. Nuclear Science and Engineering, 146, 291-318(2004).

    Kaiwen Qin, Bo Yang, Ziming Wang, Yunchen Qian, Haojie Liu, Yibao Liu. Influence of different types of nuclear fuel on burnup performance of heat pipe cooled reactor[J]. High Power Laser and Particle Beams, 2022, 34(12): 126001
    Download Citation