• Frontiers of Optoelectronics
  • Vol. 3, Issue 1, -1 (2010)
Luc THEVENAZ*
Author Affiliations
  • Ecole Polytechnique FEdErale de Lausanne, Institute of Electrical Engineering, Lausanne 1015, Switzerland
  • show less
    DOI: 10.1007/s12200-009-0086-9 Cite this Article
    Luc THEVENAZ. Brillouin distributed time-domain sensing in optical fibers: state of the art and perspectives[J]. Frontiers of Optoelectronics, 2010, 3(1): -1 Copy Citation Text show less
    References

    [1] Horiguchi T, Tateda M. Optical-fiber-attenuation investigation using stimulated Brillouin scattering between a pulse and a continuous wave. Optics Letters, 1989, 14(8): 408–410

    [2] Horiguchi T, Kurashima T, Tateda M. A technique to measure distributed strain in optical fibers. IEEE Photonics Technology Letters, 1990, 2(5): 352–354

    [3] Kurashima T, Horiguchi T, Tateda M. Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers. Optics Letters, 1990, 15(18): 1038–1040

    [4] Horiguchi T, Kurashima T, Tateda M. Tensile strain dependence of Brillouin frequency shift in silica optical fibers. IEEE Photonics Technology Letters, 1989, 1(5): 107–108

    [5] Nikles M, Thevenaz L, Robert P A. Brillouin gain spectrum characterization in single-mode optical fibers. Journal of Lightwave Technology, 1997, 15(10): 1842–1851

    [6] Horiguchi T, Shimizu K, Kurashima T, Tateda M, Koyamada Y. Development of a distributed sensing technique using Brillouin scattering. Journal of Lightwave Technology, 1995, 13(7): 1296–1302

    [7] Alahbabi M N, Cho Y T, Newson T P. 150-km-range distributed temperature sensor based on coherent detection of spontaneous Brillouin backscatter and in-line Raman amplification. Journal of the Optical Society of America B, 2005, 22(6): 1321–1324

    [8] Bao X, Webb D J, Jackson D A. 32-km distributed temperature sensor based on Brillouin loss in an optical fiber. Optics Letters, 1993, 18(18): 1561–1563

    [9] Nikles M, Thevenaz L, Robert P A. Simple distributed fiber sensor based on Brillouin gain spectrum analysis. Optics Letters, 1996, 21(10): 758–760

    [10] Thevenaz L, Nikles M, Fellay A, Facchini M, Robert P A. Applications of distributed Brillouin fiber sensing. In: Proceedings of International Conference on Applied Optical Metrology. Balatonfured: SPIE, 1998, 3407: 374–381

    [11] Van Deventer M O, Boot A J. Polarization properties of stimulated Brillouin scattering in single-mode fibers. Journal of Lightwave Technology, 1994, 12(4): 585–590

    [12] Thevenaz L, Foaleng-Mafang S, Nikles M. Fast measurement of local PMD with high spatial resolution using stimulated Brillouin scattering. In: Proceedings of the 33rd European Conference on Optical Communication. 2007, 10.1.2

    [13] Hotate K, Hasegawa T. Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique-proposal, experiment and simulation. IEICE Transactions on Electronics, 2000, E83-C(3): 405–412

    [14] Hotate K, Tanaka M. Distributed fiber Brillouin strain sensing with 1-cm spatial resolution by correlation-based continuous-wave technique. IEEE Photonics Technology Letters, 2002, 14(2): 179–181

    [15] Bao X, Brown A, DeMerchant M, Smith J. Characterization of the Brillouin-loss spectrum of single-mode fibers by use of very short (<10-ns) pulses. Optics Letters, 1999, 24(8): 510–512

    [16] Lecoeuche V, Webb D J, Pannell C N, Jackson D A. Transient response in high-resolution Brillouin-based distributed sensing using probe pulses shorter than the acoustic relaxation time. Optics Letters, 2000, 25(3): 156–158

    [17] Brown A W, Colpitts B G, Brown K. Dark-pulse Brillouin optical time-domain sensor with 20-mm spatial resolution. Journal of Lightwave Technology, 2007, 25(1): 381–386

    [18] Foaleng-Mafang S, Beugnot J C, Thevenaz L. Optimized configuration for high resolution distributed sensing using Brillouin echoes. In: Proceedings of the 20th International Conference on Optical Fibre Sensors, Edinburgh: SPIE, 2009, 7503: 75032C

    [19] Thevenaz L, Foaleng-Mafang S. Distributed fiber sensing using Brillouin echoes. In: Proceedings of the 19th International Conference on Optical Fibre Sensors. Perth: SPIE, 2008, 7004: 70043N

    [20] Thevenaz L, Beugnot J C. General analytical model for distributed Brillouin sensors with sub-meter spatial resolution. In: Proceedings of the 20th International Conference on Optical Fibre Sensors. Edinburgh: SPIE, 2009, 7503: 75036A

    [21] Li W, Bao X, Li Y, Chen L. Differential pulse-width pair BOTDA for high spatial resolution sensing. Optics Express, 2008, 16(26): 21616–21625

    [22] Song K Y, Zou W, He Z, Hotate K. All-optical dynamic grating generation based on Brillouin scattering in polarization-maintaining fiber. Optics Letters, 2008, 33(9): 926–928

    [23] Dong Y, Bao X, Chen L. Distributed temperature sensing based on birefringence effect on transient Brillouin grating in a polarizationmaintaining photonic crystal fiber. Optics Letters, 2009, 34(17): 2590–2592

    [24] SongK Y, ZouW, He Z, Hotate K. Optical time-domainmeasurement of Brillouin dynamic grating spectrum in a polarization-maintaining fiber. Optics Letters, 2009, 34(9): 1381–1383

    [25] Zou W, He Z, Song K Y, Hotate K. Correlation-based distributed measurement of a dynamic grating spectrum generated in stimulated Brillouin scattering in a polarization-maintaining optical fiber. Optics Letters, 2009, 34(7): 1126–1128

    [26] Song K Y, Chin S, Primerov N, Thevenaz L. Time-domain distributed sensor with 1 cm spatial resolution based on Brillouin dynamic gratings. In: Proceedings of the 20th International Conference on Optical Fibre Sensors. Edinburgh: SPIE, 2009, 7503: 75037V

    Luc THEVENAZ. Brillouin distributed time-domain sensing in optical fibers: state of the art and perspectives[J]. Frontiers of Optoelectronics, 2010, 3(1): -1
    Download Citation