• Infrared Technology
  • Vol. 44, Issue 3, 205 (2022)
Yiqun ZHAO1, Zhenfen WU2、*, Xiaojie YANG1, Dazheng DENG3, Xue’e LIU1, and Huiqun ZHOU1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: Cite this Article
    ZHAO Yiqun, WU Zhenfen, YANG Xiaojie, DENG Dazheng, LIU Xue’e, ZHOU Huiqun. Research Progress on Stability of PbS Colloidal Quantum Dots[J]. Infrared Technology, 2022, 44(3): 205 Copy Citation Text show less
    References

    [1] ZHAO Y, YANG S, ZHAO J, et al. PbS quantum dots based organic-inorganic hybrid infrared detecting and display devices[J]. Mater. Lett., 2017, 196: 176-178.

    [2] HOU B, CHO Y, Kim B S, et al. Highly monodispersed PbS quantum dots for outstanding cascaded-junction solar cells[J]. ACS Energy Lett., 2016, 1(4): 834-839.

    [3] ZHANG B, LI G, ZHANG J, et al. Synthesis and characterization of PbS nanocrystals in water/C12E9/cyclohexane microemulsions[J]. Nanotechnology, 2003, 14(4): 443-446.

    [4] YANG X, YANG J, KHAN J, et al. Hydroiodic acid additive enhanced the performance and stability of PbS-QDs solar cells via suppressing hydroxyl ligand[J]. Nanomicro Lett., 2020, 12(1): 37.

    [5] CHUANG C H, Brown P R, Bulovic V, et al. Improved performance and stability in quantum dot solar cells through band alignment engineering[J]. Nat. Mater., 2014, 13(8): 796-801.

    [6] Shrestha A, Batmunkh M, Tricoli A, et al. Near-infrared active lead chalcogenide quantum dots: preparation, post-synthesis lig and exchange, and applications in solar cells[J]. Angew. Chem. Int. Ed., 2019, 58(16): 5202-5224.

    [7] Tavakoli Dastjerdi H, Tavakoli R, Yadav P, et al. Oxygen plasma-induced p-type doping improves performance and stability of PbS quantum dot solar cells[J]. ACS Appl. Mater. Interfaces, 2019, 11(29): 26047-26052.

    [8] LIN Q, YUN H J, LIU W, et al. Phase-transfer ligand exchange of lead chalcogenide quantum dots for direct deposition of thick, highly conductive films[J]. J. Am. Chem. Soc., 2017, 139(19): 6644-6653.

    [9] De Iacovo A, Venettacci C, Colace L, et al. PbS colloidal quantum dot photodetectors operating in the near infrared[J]. Sci. Rep., 2016, 6: 37913.

    [10] Venettacci C, Martin-Garcia B, Prato M, et al. Increasing responsivity and air stability of PbS colloidal quantum dot photoconductors with iodine surface ligands[J]. Nanotechnology, 2019, 30(40): 405204.

    [11] Georgitzikis E, Malinowski P E, Li Y, et al. Integration of PbS quantum dot photodiodes on silicon for NIR imaging[J]. IEEE Sens. J., 2020, 20(13): 6841-6848.

    [12] CHEN W, TANG H, CHEN Y, et al. Spray-deposited PbS colloidal quantum dot solid for near-infrared photodetectors[J]. Nano Energy, 2020, 78: 105254.

    [13] Ahn S, CHUNG H, CHEN W, et al. Optoelectronic response of hybrid PbS-QD/graphene photodetectors[J]. J. Phys. Chem. B, 2019, 151(23): 234705.

    [14] SUN L, Choi J J, Stachnik D, et al. Bright infrared quantum-dot light-emitting diodes through inter-dot spacing control[J]. Nature Nanotechnology, 2012, 7(6): 369-373.

    [15] Shirasaki Y, Supran G J, Bawendi M G, et al. Emergence of colloidal quantum-dot light-emitting technologies[J]. Nature Photonics, 2013, 7(1): 13-23.

    [16] Zaini M S, Liew J Y C, Alang Ahmad S A, et al. Photoluminescence investigation of carrier localization in colloidal PbS and PbS/MnS quantum dots[J]. ACS Omega, 2020, 5(48): 30956-30962.

    [17] Pradhan S, Di Stasio F, Bi Y, et al. High-efficiency colloidal quantum dot infrared light-emitting diodes via engineering at the supra-nanocrystalline level[J]. Nat Nanotechnol, 2019, 14(1): 72-79.

    [18] LIU H, ZHONG H, ZHENG F, et al. Near-infrared lead chalcogenide quantum dots: Synthesis and applications in light emitting diodes[J]. Chinese Phys. B, 2019, 28(12): 128504.

    [19] Imamura Y, Yamada S, Tsuboi S, et al. Near-infrared emitting PbS quantum dots for in vivo fluorescence imaging of the thrombotic state in septic mouse brain[J]. Molecules, 2016, 21(8): 1080.

    [20] Benayas A, Ren F, Carrasco E, et al. PbS/CdS/ZnS quantum dots: A multifunctional platform for in vivo near-infrared low-dose fluorescence imaging[J]. Adv. Funct. Mater., 2015, 25(42): 6650-6659.

    [21] Raissi M, Sajjad M T, Pellegrin Y, et al. Size dependence of efficiency of PbS quantum dots in NiO-based dye sensitised solar cells and mechanistic charge transfer investigation[J]. Nanoscale, 2017, 9(40): 15566-15575.

    [22] Cademartiri L, Bertolotti J, Sapienza R, et al. Multigram scale, solventless, and diffusion-controlled route to highly monodisperse PbS nanocrystals[J]. J Phys. Chem. B, 2006, 110(2): 671-673.

    [23] ZHOU S, LIU Z, WANG Y, et al. Towards scalable synthesis of high-quality PbS colloidal quantum dots for photovoltaic applications[J]. J. Mater. Chem. C, 2019, 7(6): 1575-1583.

    [24] Moreels I, Lambert K, Smeets D, et al. Size-dependent optical properties of colloidal PbS quantum dots[J]. ACS Nano, 2009, 3(10): 3023-3030.

    [25] ZHANG J, Crisp R W, GAO J, et al. Synthetic conditions for high-accuracy size control of PbS quantum dots[J]. J. Phys. Chem. Lett., 2015, 6(10): 1830-1833.

    [26] .apek R K, Lambert K, Dorfs D, et al. Synthesis of extremely small CdSe and bright blue luminescent CdSe/ZnS nanoparticles by a prefocused hot-injection approach[J]. Chem. Mater., 2009, 21(8): 1743-1749.

    [27] KUO Y C, WANG Q, Ruengruglikit C, et al. Antibody-conjugated CdTe quantum dots for escherichia coli detection[J]. J. Phys. Chem. C, 2008, 112(13): 4818-4824.

    [28] MAO X, YU J, XU J, et al. Enhanced performance of all solid-state quantum dot-sensitized solar cells via synchronous deposition of PbS and CdS quantum dots[J]. New J. Chem., 2020, 44(2): 505-512.

    [29] Skurlov I D, Korzhenevskii I G, Mudrak A S, et al. Optical properties, morphology, and stability of iodide-passivated lead sulfide quantum dots[J]. Materials, 2019, 12(19): 3219.

    [30] Beygi H, Sajjadi S A, Babakhani A, et al. Surface chemistry of as-synthesized and air-oxidized PbS quantum dots[J]. Appl. Surf. Sci., 2018, 457: 1-10.

    [31] Choi H, Ko J H, Kim Y H, et al. Steric-hindrance-driven shape transition in PbS quantum dots: understanding size-dependent stability[J]. J. Am. Chem. Soc., 2013, 135(14): 5278-5281.

    [32] Kagan C R, Murray C B. Charge transport in strongly coupled quantum dot solids[J]. Nat Nanotechnol, 2015, 10(12): 1013-1026.

    [33] Kim S, Noh J, Choi H, et al. One-step deposition of photovoltaic layers using iodide terminated PbS quantum dots[J]. J. Phys. Chem. Lett., 2014, 5(22): 4002-4007.

    [34] Shuklov I A, Toknova V F, Lizunova A A, et al. Controlled aging of PbS colloidal quantum dots under mild conditions[J]. Mater. Today Chem., 2020, 18: 100357.

    [35] ZHANG Y, Zherebetskyy D, Bronstein N D, et al. Molecular oxygen induced in-gap states in PbS quantum dots[J]. ACS Nano, 2015, 9(10): 10445-10452.

    [36] Ushakova E V, Cherevkov S A, Litvin A P, et al. Ligand-dependent morphology and optical properties of lead sulfide quantum dot superlattices[J]. J. Phys. Chem. C, 2016, 120(43): 25061-25067.

    [37] Weidman M C, Beck M E, Hoffman R S, et al. Monodisperse, air-stable PbS nanocrystals via precursor stoichiometry control[J]. ACS Nano, 2014, 8(6): 6363-6371.

    [38] ZHAO H, LIANG H, Vidal F, et al. Size dependence of temperature-related optical properties of PbS and PbS/CdS core/shell quantum dots[J]. J. Phys. Chem. C, 2014, 118(35): 20585-20593.

    [39] LIU J, ZHANG H, Navarro-Pardo F, et al. Hybrid surface passivation of PbS/CdS quantum dots for efficient photoelectrochemical hydrogen generation[J]. Appl. Surf. Sci., 2020, 530: 147252.

    [40] Tsukasaki Y, Morimatsu M, Nishimura G, et al. Synthesis and optical properties of emission-tunable PbS/CdS core–shell quantum dots for in vivo fluorescence imaging in the second near-infrared window[J]. RSC Adv., 2014, 4(77): 41164-41171.

    [41] Nasilowski M, Nienhaus L, Bertram S N, et al. Colloidal atomic layer deposition growth of PbS/CdS core/shell quantum dots[J]. Chem. Comm., 2017, 53(5): 869-872.

    [42] Maulu A, Navarro-Arenas J, Rodriguez-Canto P J, et al. Charge transport in trap-sensitized infrared PbS quantum-dot-based photoconductors: pros and cons[J]. Nanomaterials, 2018, 8(9): 677.

    [43] CAO J, ZHU H, DENG D, et al. In vivo NIR imaging with PbS quantum dots entrapped in biodegradable micelles[J]. J. Biomed. Mater. Res. A, 2012, 100(4): 958-968.

    [44] DENG D, CAO J, XIA J, et al. Two-phase approach to high-quality, oil-soluble, near-infrared-emitting PbS quantum dots by wsing various water-soluble anion precursors[J]. Eur. J. Inorg. Chem., 2011, 2011(15): 2422-2432.

    [45] Abel K A, Shan J, Boyer J-C, et al. Highly photoluminescent PbS nanocrystals: The beneficial effect of trioctylphosphine[J]. Chem. Mater., 2008, 20(12): 3794-3796.

    [46] Moreels I, Justo Y, De Geyter B, et al. Size-tunable, bright, and stable PbS quantum dots: a surface chemistry study[J]. ACS Nano, 2011, 5(3): 2004-2012.

    [47] Steckel J S, Yen B K, Oertel D C, et al. On the mechanism of lead chalcogenide nanocrystal formation[J]. J. Am. Chem. Soc., 2006, 128(40): 13032-13033.

    [48] CAO Y, Stavrinadis A, Lasanta T, et al. The role of surface passivation for efficient and photostable PbS quantum dot solar cells[J]. Nature Energy, 2016, 1(4): 16035.

    [49] Beygi H, Sajjadi S A, Babakhani A, et al. Air exposure oxidation and photooxidation of solution-phase treated PbS quantum dot thin films and solar cells[J]. Sol. Energ. Mat. Sol. C., 2019, 203: 110163.

    [50] Pichaandi J, van Veggel F C J M. Near-infrared emitting quantum dots: Recent progress on their synthesis and characterization[J]. Coord. Chem. Rev., 2014, 263-264: 138-150.

    [51] Boercker J E, Woodall D L, Cunningham P D, et al. Synthesis and characterization of PbS/ZnS core/shell nanocrystals[J]. Chem. Mater., 2018, 30(12): 4112-4123.

    [52] Speirs M J, Balazs D M, Fang H H, et al. Origin of the increased open circuit voltage in PbS–CdS core–shell quantum dot solar cells[J]. J. Mater. Chem. A, 2015, 3(4): 1450-1457.

    [53] WANG Z, HU Z, Kamarudin M A, et al. Enhancement of charge transport in quantum dots solar cells by N-butylamine-assisted sulfur-crosslinking of PbS quantum dots[J]. Sol. Energy, 2018, 174: 399-408.

    [54] Zherebetskyy D, Scheele M, Zhang Y, et al. Hydroxylation of the surface of PbS nanocrystals passivated with oleic acid[J]. Science, 2014, 344(6190): 1380-1384.

    [55] GU M, WANG Y, YANG F, et al. Stable PbS quantum dot ink for efficient solar cells by solution-phase ligand engineering[J]. J. Mater. Chem. A, 2019, 7(26): 15951-15959.

    ZHAO Yiqun, WU Zhenfen, YANG Xiaojie, DENG Dazheng, LIU Xue’e, ZHOU Huiqun. Research Progress on Stability of PbS Colloidal Quantum Dots[J]. Infrared Technology, 2022, 44(3): 205
    Download Citation