• Photonics Research
  • Vol. 9, Issue 4, 637 (2021)
Hongwei Li1、2, Bo Zhao1, Jipeng Ni1, and Wei Gao1、*
Author Affiliations
  • 1Heilongjiang Provincial Key Laboratory of Quantum Control, School of Science, Harbin University of Science and Technology, Harbin 150080, China
  • 2National and Local Joint Engineering Research Center of Fiber Optic Sensing Technology, College of Electronic Engineering, Heilongjiang University, Harbin 150080, China
  • show less
    DOI: 10.1364/PRJ.416308 Cite this Article Set citation alerts
    Hongwei Li, Bo Zhao, Jipeng Ni, Wei Gao. Tailoring spatial structure of Brillouin spectra via spiral phase precoding[J]. Photonics Research, 2021, 9(4): 637 Copy Citation Text show less
    References

    [1] D. W. Zhou, Y. Y. Dong, B. Z. Wang, C. Pang, D. X. Ba, H. Y. Zhang, Z. W. Lu, H. Li, X. Y. Bao. Single-shot BOTDA based on an optical chirp chain probe wave for distributed ultra-fast measurement. Light Sci. Appl., 7, 32(2018).

    [2] Y. H. Wang, L. Zhao, M. J. Zhang, J. Z. Zhang, L. J. Qiao, T. Wang, S. H. Gao, Q. Zhang, Y. C. Wang. Dynamic strain measurement by a single-slope-assisted chaotic Brillouin optical correlation-domain analysis. Opt. Lett., 45, 1822-1825(2020).

    [3] P. Robert, D. M. Alba, R. Giancarlo, A. Giuseppe. Brillouin microscopy: an emerging tool for mechanobiology. Nat. Methods, 16, 969-977(2019).

    [4] I. Remer, R. Shaashoua, N. Shemesh, A. B. Zvi, A. Bilenca. High-sensitivity and high-specificity biomechanical imaging by stimulated Brillouin scattering microscopy. Nat. Methods, 17, 913-916(2020).

    [5] L. W. Sheng, D. X. Ba, Z. W. Lu. Imaging enhancement based on stimulated Brillouin amplification in optical fiber. Opt. Express, 27, 10974-10980(2019).

    [6] C. W. Ballmann, J. V. Thompson, A. J. Traverso, Z. K. Meng, M. O. Scully, V. V. Yakovlev. Stimulated Brillouin scattering microscopic imaging. Sci. Rep., 5, 18139(2015).

    [7] A. Kobyakov, M. Sauer, D. Chowdhury. Stimulated Brillouin scattering in optical fibers. Adv. Opt. Photon., 2, 1-59(2010).

    [8] Z. K. Meng, A. J. Traverso, C. W. Ballmann, M. A. T. Wood, V. V. Yakovlev. Seeing cells in a new light: a renaissance of Brillouin spectroscopy. Adv. Opt. Photon., 8, 300-327(2016).

    [9] L. Zhao, Y. H. Wang, X. X. Hu, M. J. Zhang, J. Z. Zhang, L. J. Qiao, T. Wang, S. H. Gao, A. A. Himika. Effect of chaotic time delay signature on Brillouin gain spectrum in the slope-assisted chaotic BOCDA. Opt. Express, 28, 18189-18201(2020).

    [10] E. Edre, M. C. Gather, G. Scarcelli. Integration of spectral coronagraphy within VIPA-based spectrometers for high extinction Brillouin imaging. Opt. Express, 25, 6895-6903(2017).

    [11] M. J. Damzen, V. I. Vlad, V. Babin, A. Mocofanescu. Stimulated Brillouin Scattering: Fundamentals and Applications, 17-36(2003).

    [12] F. Cheng, S. Preussler, T. Schneider. Sharp tunable and additional noise-free optical filter based on Brillouin losses. Photon. Res., 6, 132-137(2018).

    [13] K. Elsayad, F. Palombo, T. Dehoux, D. Fioretto. Brillouin light scattering microspectroscopy for biomedical research and applications: introduction to feature issue. Biomed. Opt. Express, 10, 2670-2673(2019).

    [14] J. L. Shi, D. P. Yuan, J. Xu, Y. N. Guo, N. N. Luo, S. J. Li, X. D. He. Effects of temperature and pressure on the threshold value of SBS LIDAR in seawater. Opt. Express, 28, 39038-39047(2020).

    [15] I. Remer, A. Bilenca. High-speed stimulated Brillouin scattering spectroscopy at 780 nm. APL Photon., 1, 061301(2016).

    [16] R. W. Boyd, K. Rzyzewski, P. Narum. Noise initiation of stimulated Brillouin scattering. Phys. Rev. A, 42, 5514-5521(1990).

    [17] W. Gao, Z. W. Lu, W. M. He, C. Y. Zhu. Investigation on competition between the input signal and noise in a Brillouin amplifier. Appl. Phys. B, 105, 317-321(2011).

    [18] L. W. Sheng, D. X. Ba, Z. W. Lu. Low-noise and high-gain of stimulated Brillouin amplification via orbital angular momentum mode division filtering. Appl. Opt., 58, 147-151(2019).

    [19] W. Gao, C. Y. Mu, H. W. Li, Y. Q. Yang, Z. H. Zhu. Parametric amplification of orbital angular momentum beams based on light-acoustic interaction. Appl. Phys. Lett., 107, 041119(2015).

    [20] C. Cui, Y. Wang, Z. Lu, H. Yuan, Y. Wang, Y. Chen, Q. Wang, Z. Bai, R. P. Mildren. Demonstration of 2.5 J, 10 Hz, nanosecond laser beam combination system based on non-collinear Brillouin amplification. Opt. Express, 26, 32717-32727(2018).

    [21] I. Remer, A. Bilenca. Background-free Brillouin spectroscopy in scattering media at 780 nm via stimulated Brillouin scattering. Opt. Lett., 41, 926-929(2016).

    [22] Z. H. Zhu, L. W. Sheng, Z. W. Lv, W. M. He, W. Gao. Orbital angular momentum mode division filtering for photon-phonon coupling. Sci. Rep., 7, 40526(2017).

    [23] C. Maurer, A. Jesacher, S. Bernet, M. R. Marte. What spatial light modulators can do for optical microscopy. Laser Photon. Rev., 5, 81-101(2011).

    [24] M. R. Marte. Orbital angular momentum light in microscopy. Philos. Trans. R. Soc. A, 375, 20150437(2017).

    [25] C. S. Guo, Y. J. Han, J. B. Xu. Radial Hilbert transform with Laguerre–Gaussian spatial filters. Opt. Lett., 31, 1394-1396(2006).

    [26] J. H. Lee, G. Foo, E. G. Johnson, G. A. Swartzlander. Experimental verification of an optical vortex coronagraph. Phys. Rev. Lett., 97, 053901(2006).

    [27] S. K. Liu, Y. H. Li, S. L. Liu, Z. Y. Zhou, Y. Li, C. Yang, G. C. Guo, B. S. Shi. Real-time quantum edge enhanced imaging. Opt. Express, 28, 35415-35426(2020).

    [28] T. J. McIntyre, C. Maurer, S. Bernet, M. R. Marte. Differential interference contrast imaging using a spatial light modulator. Opt. Lett., 34, 2988-2990(2009).

    [29] S. Furhapter, A. Jesacher, S. Bernet, M. R. Marte. Spiral phase contrast imaging in microscopy. Opt. Express, 13, 689-694(2005).

    [30] J. K. Wang, W. H. Zhang, Q. Q. Qi, S. S. Zheng, L. X. Chen. Gradual edge enhancement in spiral phase contrast imaging with fractional vortex filters. Sci. Rep., 5, 15826(2015).

    [31] X. D. Qiu, F. S. Li, W. H. Zhang, Z. H. Zhu, L. X. Chen. Spiral phase contrast imaging in nonlinear optics: seeing phase objects using invisible illumination. Optica, 5, 208-212(2018).

    [32] X. D. Qiu, F. S. Li, W. H. Zhang, H. G. Liu, X. F. Chen, L. X. Chen. Optical vortex copier and regenerator in the Fourier domain. Photon. Res., 6, 641-646(2018).

    [33] S. K. Liu, C. Yang, S. L. Liu, Z. Y. Zhou, Y. Li, Y. H. Li, Z. H. Xu, G. C. Guo, B. S. Shi. Up-conversion imaging processing with field-of-view and edge enhancement. Phys. Rev. Appl., 11, 044013(2019).

    [34] W. Gao, D. Sun, Y. F. Bi, J. Y. Li, Y. L. Wang. Stimulated Brillouin scattering with high reflectivity and fidelity in liquid-core optical fibers. Appl. Phys. B, 107, 355-359(2012).

    [35] Z. W. Lu, W. Gao, W. M. He, Z. Zhang, W. Hasi. High amplification and low noise achieved by a double-stage non-collinear Brillouin amplifier. Opt. Express, 17, 10675-10680(2009).

    [36] Q. Guo, Z. Lu, Y. Wang. Highly efficient Brillouin amplification of strong Stokes seed. Appl. Phys. Lett., 96, 221107(2010).

    [37] H. W. Li, B. Zhao, L. W. Jin, D. M. Wang, W. Gao. Flat gain over arbitrary orbital angular momentum modes in Brillouin amplification. Photon. Res., 7, 748-753(2019).

    [38] Y. Li, Z. Y. Zhou, S. L. Liu, S. K. Liu, C. Yang, Z. H. Xu, Y. H. Li, B. S. Shi. Frequency doubling of twisted light independent of integer topological charge. OSA Contin., 2, 470-477(2019).

    Hongwei Li, Bo Zhao, Jipeng Ni, Wei Gao. Tailoring spatial structure of Brillouin spectra via spiral phase precoding[J]. Photonics Research, 2021, 9(4): 637
    Download Citation