[1] ELAYAN H, AMIN O, SHIHADA B, et al. Terahertz band: the last piece of RF spectrum puzzle for communication systems[J]. IEEE open journal of the communications society, 2019, 1: 1-32.
[2] BARKABIAN M, SHARIFI N, GRANPAYEH N. Multi-functional high-efficiency reflective polarization converter based on an ultra-thin graphene metasurface in the THz band[J]. Optics express, 2021, 29(13): 20160-20174.
[3] ZHENG Z, ZHAO S, LIU Y, et al. Discrimination of maleic hydrazide polymorphs using terahertz spectroscopy and density functional theory[J]. Optoelectronics letters, 2023, 19(8): 493-497.
[4] LUCCHESI C, CAKIROGLU D, PEREZ J P, et al. Near-field thermophotovoltaic conversion with high electrical power density and cell efficiency above 14%[J]. Nano letters, 2021, 21(11): 4524-4529.
[5] LANDY N I, SAJUYIGBE S, MOCK J J, et al. Perfect metamaterial absorber[J]. Physical review letters, 2008, 100(20): 207402.
[6] FU P, LIU F, REN G J, et al. A broadband metamaterial absorber based on multi-layer graphene in the terahertz region[J]. Optics communications, 2018, 417: 62-66.
[7] QUADER S, AKRAM M R, XIAO F, et al. Graphene based ultra-broadband terahertz metamaterial absorber with dual-band tunability[J]. Journal of optics, 2020, 22(9): 095104.
[8] KENNEY M, GRANT J, SHAH Y D, et al. Octave-spanning broadband absorption of terahertz light using metasurface fractal-cross absorbers[J]. ACS photonics, 2017, 4(10): 2604-2612.
[9] ZHENG Z, LUO Y, YANG H, et al. Thermal tuning of terahertz metamaterial absorber properties based on VO2[J]. Physical chemistry chemical physics, 2022, 24(15): 8846-8853.
[10] ZHENG Z, ZHENG Y, LUO Y, et al. Terahertz perfect absorber based on flexible active switching of ultra-broadband and ultra-narrowband[J]. Optics express, 2021, 29(26): 42787-42799.
[11] LIU S, BO B, ZOU Y, et al. Ultrawide-band terahertz beam-splitter based on ultrathin metallic films[J]. Acta optica sinica, 2017, 37(11): 1131002.
[12] FANG J, WANG B, WEN K, et al. Ultra-broadband THz absorber with doped silicon based on periodic T-shaped arrays[J]. Optik, 2021, 243: 167412.
[13] ZHANG R, LUO Y, XU J, et al. Structured vanadium dioxide metamaterial for tunable broadband terahertz absorption[J]. Optics express, 2021, 29(26): 42989-42998.
[14] HUANG X, HE W, YANG F, et al. Polarization-independent and angle-insensitive broadband absorber with a target-patterned graphene layer in the terahertz regime[J]. Optics express, 2018, 26(20): 25558-25566.
[15] ZHAO L, LIU H, HE Z, et al. Theoretical design of twelve-band infrared metamaterial perfect absorber by combining the dipole, quadrupole, and octopole plasmon resonance modes of four different ring-strip resonators[J]. Optics express, 2018, 26(10): 12838-12851.
[16] HE X, YAN S, MA Q, et al. Broadband and polarization-insensitive terahertz absorber based on multilayer metamaterials[J]. Optics communications, 2015, 340: 44-49.
[17] WEN J, SUN W, LIANG B, et al. Dynamically switchable broadband-narrowband terahertz metamaterial absorber based on vanadium dioxide and multilayered structure[J]. Optics communications, 2023: 129710.
[18] ZHANG B. Switchable and tunable bifunctional THz metamaterial absorber[J]. Journal of the optical society of America B, 2022, 39(3): A52-A60.
[19] HUANG J, LI J, YANG Y, et al. Broadband terahertz absorber with a flexible, reconfigurable performance based on hybrid-patterned vanadium dioxide metasurfaces[J]. Optics express, 2020, 28(12): 17832-17840.
[20] ZHENG Z, ZHENG Y, LUO Y, et al. A switchable terahertz device combining ultra-wideband absorption and ultra-wideband complete reflection[J]. Physical chemistry chemical physics, 2022, 24(4): 2527-2533.
[21] HUANG X, CAO M, WANG D Q, et al. Broadband polarization-insensitive and oblique-incidence terahertz metamaterial absorber with multi-layered graphene[J]. Optical materials express, 2022, 12(2): 811-822.
[22] WU G, JIAO X, WANG Y, et al. Ultra-wideband tunable metamaterial perfect absorber based on vanadium dioxide[J]. Optics express, 2021, 29(2): 2703-2711.