• Journal of Advanced Dielectrics
  • Vol. 13, Issue 1, 2242002 (2023)
Zhenji Zhou1、2, Weimin Xia2、*, Jing Liu1, Na Tian1, and Caiyin You1、**
Author Affiliations
  • 1School of Materials Science and Engineering, Xi’an University of Technology, Xi’an 710048, Shaanxi, P. R. China
  • 2Faculty of Printing, Packaging, and Digital Media Technology, Xi’an University of Technology, Xi’an 710048, Shaanxi, P. R. China
  • show less
    DOI: 10.1142/S2010135X22420024 Cite this Article
    Zhenji Zhou, Weimin Xia, Jing Liu, Na Tian, Caiyin You. Enhancement of permittivity and energy storage efficiency of poly (vinylidene fluoride-chlorotrifluoroethylene) by uniaxial stretching[J]. Journal of Advanced Dielectrics, 2023, 13(1): 2242002 Copy Citation Text show less
    References

    [1] Y. Tian, Q. Qian, Y. Sheng, X. Zhang, H. Wu, H. Ye. High-energy density in poly(vinylidene fluoride-trifluoroethylene) composite incorporated with modified halloysite nanotubular architecture. Colloid Surf. A, 625, 126993(2021). https://doi.org/10.1016/j.colsurfa.2021.126993

    [2] M. Li, H. Wondergem, M. J. Spijkman, K. Asadi, I. Katsouras, P. W. M. Blom, D. M. D. Leeuw. Revisiting theδ-phase of poly(vinylidene fluoride) for solution-processed ferroelectric thin films. Nat. Mater., 12, 433438(2013). https://doi.org/10.1038/nmat3577

    [3] B. Chu, X. Zhou, K. Ren, B. Neese, M. Lin, Q. Wang, F. Bauer, Q. M. Zhang. A dielectric polymer with high electric energy density and fast discharge speed. Science, 313, 334(2006). https://doi.org/10.1126/science.1127798

    [4] Y. Yang, J. He, Q. Li, L. Gao, J. Hu, R. Zeng, J. Qin, X. S. Wang, Q. Wang. Self-healing of electrical damage in polymers using superparamagnetic nanoparticles. Nat. Nanotechnol., 14, 151(2019). https://doi.org/10.1038/s41565-018-0327-4

    [5] C. Ribeiro, C. M. Costa, D. M. Correia, J. Nunes-Pereira, J. Oliveira, P. Martins, R. Goncalves, V. F. Cardoso, Lanceros-Mendez. Electroactive poly(vinylidenefluoride)-based structures for advanced applications. Nat. Protoc., 13, 681(2018). https://doi.org/10.1038/nprot.2017.157

    [6] Y. Hao, X. Wang, K. Bi, J. Zhang, Y. Huang, L. Wu, P. Zhao, K. Xu, M. Lei, L. Li. Ultrafine core-shell BaTiO3@SiO2structures for nanocomposite capacitors with high energy density. Nano Energy, 31, 49(2017). https://doi.org/10.1016/j.nanoen.2018.07.006

    [7] H. Ye, Q. Wang, Q. Sun, L. Xu. High energy density and interfacial polarization in poly(vinylidene fluoride-chlorotrifluoroethylene) nanocomposite incorporated with halloysite nanotube architecture. Colloid Surf. A, 606, 125495(2020). https://doi.org/10.1016/j.colsurfa.2020.125495

    [8] Z. M. Dang, M. Zheng. Dielectric polymer materials for high-density energy storage, 7 Multiphase/multicomponent dielectric polymer materials with high permittivity and high breakdown strength, 247-287(2018). https://doi.org/10.1016/B978-0-12-813215-9.00007-5

    [9] B. H. Guo, Dai, J. L. Han, Y. Gao, J. R. He, Z. H. Dai, J. Xu. Increased dielectric permittivity of poly(vinylidenefluoride-co-chlorotrifluoroethylene) nanocomposites by coating BaTiO3with functional groups owning high bond dipole moment. Colloid Surf. A, 529, 560(2017). https://doi.org/10.1016/j.colsurfa.2017.05.065

    [10] W. S. Wang, Y. Jing, Z. C. Liu. Dielectric and energy storage properties of PVDF films with large area prepared by solution tape casting process. IEEE Trans. Dielect. Electr. Insul., 24, 697(2017). https://doi.org/10.1109/TDEI.2017.006148

    [11] N. Meng, X. Ren, G. Santagiuliana, L. Ventura, H. Zhang, J. Wu, H. Yan, M. J. Reece, E. Bilotti. Ultrahighβ-phase content poly(vinylidene fluoride) with relaxor-like ferroelectricity for high energy density capacitors. Nat. Commun., 10, 4535(2019). https://doi.org/10.1038/s41467-019-12391-3

    [12] R. P. Nie, Y. Li, L. C. Jia, J. Lei, H. D. Huang, Z. M. Li. PVDF/PMMA dielectric films with notably decreased dielectric loss and enhanced high-temperature tolerance. J. Polym. Sci. Part B Polym Phys., 57, 1043(2019). https://doi.org/10.1002/polb.24858

    [13] T. Zhang, X. Zhao, C. Zhang, Y. Zhang, Y. Zhang, Y. Feng, Q. Chi, Q. Chen. Polymer nanocomposites with excellent energy storage performances by utilizing the dielectric properties of inorganic fillers. Chem. Eng. J., 408, 127314(2021). https://doi.org/10.1016/j.cej.2020.127314

    [14] K. Wu, J. Wang, D. Liu, C. Lei, D. Liu, W. Lei, Q. Fu. Highly thermoconductive, thermostable, and super-flexible film by engineering 1D rigid rod-like aramid nanofiber/2D boron nitride nanosheets. Adv. Mater., 32, 1906939(2020). https://doi.org/10.1002/adma.201906939

    [15] Y. Zhu, H. Yao, P. Jiang, J. Wu, X. Zhu, X. Huang. Two-dimensional high-k nanosheets for dielectric polymer nanocomposites with ultrahigh discharged energy density. J. Phys. Chem. C, 122, 18282(2018). https://doi.org/10.1021/acs.jpcc.8b04918

    [16] J. Wang, H. Chen, X. Li, C. Zhang, W. Yu, L. Zhou, Q. Yang, Z. Shi, C. Xiong. Flexible dielectric film with high energy density based on chitin/boron nitride nanosheets. Chem. Eng. J., 383, 123147(2020). https://doi.org/10.1016/j.cej.2019.123147

    [17] B. Zhang, X. M. Chen, W. W. Wu, A. Khesro, P. Liu, M. M. Mao, K. X. Song, R. Sun, D. W. Wang. Outstanding discharge energy density and efficiency of the bilayer nanocomposite films with BaTiO3-dispersed PVDF polymer and polyetherimide layer. Chem. Eng. J., 446, 136926(2022). https://doi.org/10.1016/j.cej.2022.136926

    [18] N. Tsutsumi, R. Kosugi, K. Kinashi, W. Sakai. Nature of the enhancement in ferroelectric properties by gold nanoparticles in vinylidene fluoride and trifluoroethylene copolymer. ACS Appl. Mater. Interf., 8, 16816(2016). https://doi.org/10.1021/acsami.6b05897

    [19] M. Yang, H. Zhao, D. He, J. Bai. Constructing a continuous amorphous carbon interlayer to enhance dielectric performance of carbon nanotubes/polyvinylidene fluoride nanocomposites. Carbon, 116, 94(2017). https://doi.org/10.1016/j.carbon.2017.01.105

    [20] J. Chen, Y. Wang, X. Xu, Q. Yuan, Y. Niu, Q. Wang, H. Wang. Ultrahigh discharge efficiency and energy density achieved at low electric fields in sandwich-structured polymer films containing dielectric elastomers. J. Mater. Chem. A, 7, 3729(2019). https://doi.org/10.1039/C8TA11790J

    [21] G. Wang, J. L. Li, X. Zhang, Z. M. Fan, F. Yang, A. Feteira, D. Zhou, D. C. Sinclair, T. Ma, X. L. Tan, D. W. Wang, I. M. Reaney. Ultrahigh energy storage density lead-free multilayers by controlled electrical homogeneity. Energy Environ. Sci., 12, 582(2019). https://doi.org/10.1039/C8EE03287D

    [22] L. Y. Wu, K. Wu, C. X. Lei, D. Y. Liu, R. N. Du, F. Chen, Q. Fu. Surface modifications of boron nitride nanosheets for poly- (vinylidene fluoride) based film capacitors: Advantages of edge-hydroxylation. J. Mater. Chem. A, 7, 7664(2019). https://doi.org/10.1039/C9TA00616H

    [23] B. Liu, M. Yang, W. Zhou, H. Cai, S. Zhong, M. Zheng, Z. Dang. High energy density and discharge efficiency polypropylene nanocomposites for potential high-power capacitor. Energy Storage Mater., 27, 443(2020). https://doi.org/10.1016/j.ensm.2019.12.006

    [24] H. Ye, X. Zhang, C. Xu, L. Xu. Few-layer boron nitride nanosheets exfoliated with assistance of fluoro hyperbranched copolymer for poly (vinylidene fluoride-trifluoroethylene) nanocomposite film capacitor. Colloid Surf. A, 580, 123735(2019). https://doi.org/10.1016/j.colsurfa.2019.123735

    [25] Y. Hambal, V. V. Shvartsman, D. Lewin, C. H. Huat, D. C. Lupascu. Effect of composition on polarization hysteresis and energy storage ability of P(VDF-TrFE-CFE) relaxor terpolymers. Polymers, 13, 1343(2021). https://doi.org/10.3390/polym13081343

    [26] J. M. Carr, M. Mackey, L. Flandin, D. Schuele, L. Zhu, E. Baer. Effect of biaxial orientation on dielectric and breakdown properties of poly (ethylene terephthalate)/poly (vinylidenefluoride-co-tetrafluoroethylene) multilayerfilms. J. Poly. Sci. B Poly. Phys., 51, 882(2013). https://doi.org/10.1002/polb.23277

    [27] L. Zhu. Exploring strategies for high dielectric constant and low loss polymer dielectrics. J. Phys. Chem. Lett., 5, 3677(2014). https://doi.org/10.1021/jz501831q

    [28] K. Kim, H. B. Jung, J. H. Lim, S. Y. Ji, D. Y. Jeong. Configurational approach to the enhancement of the dielectric properties and energy density of PVDF-based polymer composites. J. Phys. D Appl. Phys., 53, 375502(2020). https://doi.org/10.1088/1361-6463/ab88e4

    [29] C. Li, L. Shi, W. Yang, Y. Zhou, X. Li, C. Zhang, Y. Yang. All polymer dielectric films for achieving high energy density film capacitors by blending poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) with aromatic polythiourea. Nanoscale Res. Lett., 15, 1(2020). https://doi.org/10.1186/s11671-020-3270-x

    [30] D. Thuau, K. Kallitsis, S. Ha, F. Bargain, T. Soulestin, G. Pecastaings, S. Tencé-Girault, F. D. D. Santos, G. Hadziioannou. High and temperature-independent dielectric constant dielectrics from PVDF-based terpolymer and copolymer blends. Adv. Electron. Mater., 6, 1901250(2020). https://doi.org/10.1002/aelm.201901250

    [31] B. Chu, Y. Zhou. Energy storage properties of PVDF terpolymer/PMMA blends. High Volt., 1, 171(2016). https://doi.org/10.1049/hve.2016.0062

    [32] Z. Zhang, T. C. M. Chung. Study of VDF/TrFE/CTFE terpolymers for high pulsed capacitor with high energy density and low energy loss. Macromolecules, 40, 783(2007). https://doi.org/10.1021/ma0627119

    [33] W. M. Xia, Z. Xu, F. Wen, W. Li, Z. C. Zhang. Crystalline properties dependence of dielectric and energy storage properties of poly (vinylidene fluoride-chlorotrifluoroethylene). Appl. Phys. Lett., 97, 1133(2010). https://doi.org/10.1063/1.3518921

    [34] F. Guan, J. Wang, L. Yang, J. K. Tseng, K. Han, Q. Wang, L. Zhu. Confinement-induced high-field antiferroelectric-like behavior in a Poly(vinylidene fluoride-co-trifluoroethylene-co- chlorotrifluoroethylene)-graft-polystyrene graft copolymer. Macromolecules, 44, 48(2011). https://doi.org/10.1021/ma102910v

    [35] J. Li, S. Tan, S. Ding, H. Li, L. Yang, Z. Zhang. High-field antiferroelectric behaviour and minimized energy loss in poly (vinylidene-co-trifluoroethylene)-graft-poly (ethyl methacrylate) for energy storage application. J. Mater. Chem. C, 22, 23468(2012). https://doi.org/10.1039/C2JM35532A

    [36] Y. Chen, X. Zhao, Q. Shen. Regulation of energy storage capacitance and efficiency in semi-crystalline vinylidene fluoride copolymers through cross-linking method. IEEE Trans. Dielect. Electr. Insul., 24, 682(2017). https://doi.org/10.1109/TDEI.2017.006276

    [37] X. Chen, Z. Li, Z. Cheng, J. Zhang, Q. Shen, H. Ge, H. Li. Greatly enhanced energy density and patterned films induced by photo cross-linking of poly (vinylidene fluoride-chlorotrifluoroethylene). Macromol. Rapid Comm., 32, 94(2011). https://doi.org/10.1002/marc.201000478

    [38] Y. Chen, X. Tang, J. Shu, X. Wang, W. Hu, Q. Shen. Crosslinked P(VDF-CTFE)/PS-COOH nanocomposites for high-energy-density capacitor application. J. Polym. Sci. Part B: Polym. Phys., 54, 1160(2016). https://doi.org/10.1002/polb.24023

    [39] N. K. Kalfoglou, H. L. Williams. Mechanical relaxations of poly(vinylidene fluoride) and some of its copolymers. J. Appl. Polym. Sci., 17, 3367(1973). https://doi.org/10.1002/app.1973.070171111

    [40] Z. Wang, Z. Zhang, T. Chung. High dielectric VDF/TrFE/CTFE terpolymers prepared by hydrogenation of VDF/CTFE copolymers: Synthesis and characterization. Macromolecules, 3, 4268(2006). https://doi.org/10.1021/ma060738m

    [41] A. J. Lovinger. Ferroelectric polymers. Science, 220, 1115(1983). https://doi.org/10.1126/science.220.4602.1115

    [42] X. Lu, Y. Tang, Z. Y. Cheng. Fabrication and characterization of free-standing, flexible and translucent BaTiO3-P(VDF-CTFE) nanocomposite films. J. Alloys Compd., 770, 327(2018). https://doi.org/10.1016/j.jallcom.2018.08.185

    [43] X. Lu, L. Zhang, Y. Tong, Z. Y. Cheng. BST-P(VDF-CTFE) nanocomposite films with high dielectric constant, low dielectric loss, and high energy-storage density. Compos. Part B: Eng., 168, 34(2019). https://doi.org/10.1016/j.compositesb.2018.12.059

    [44] Z. Li, Y. Wang, Z. Y. Cheng. Electromechanical properties of poly (vinylidenefluoride-chlorotrifluoroethylene) copolymer. Appl. Phys. Lett., 88, 062904(2006). https://doi.org/10.1063/1.2170425

    [45] Y. Li, J. Xiao, L. Li, J. Ye, F Wen, P. Dong, Y. Xie, J. Ding, Y. Zhang. Blends based P(VDF-CTFE) with quenching in ice water and PLZST modification with high energy storage performance. Polymer, 202, 122727(2020). https://doi.org/10.1016/j.polymer.2020.122727

    [46] Y. Xu, W. Wang, Z. Liu, T. Rong, Q. Yu, P. Deng, Y. Pan. Preparation and characterization of poly (vinylidene fluoride) hard elastic membrane. ShanDong Chem. Indus., 48, 62(2019). https://doi.org/10.19319/j.cnki.issn.1008-021x.2019.15.025

    [47] M. Yoo, C. W. Frank, S. Mori, S. Yamaguchi. Effect of poly (vinylidene fluoride) binder crystallinity and graphite structure on the mechanical strength of the composite anode in a lithiumion battery. Polymer, 44, 4197(2003). https://doi.org/10.1016/S0032-3861(03)00364-1

    [48] B. Mohammadi, A. A. Yousefi, S. M. Bellah. Effect of tensile strain rate and elongation on crystalline structure and piezoelectric properties of PVDF thin films. Polym. Test., 26, 42(2007). https://doi.org/10.1016/j.polymertesting.2006.08.003

    [49] W. M. Xia, F. Liang, J. H. Xing, Z. Xu. Dielectric property, electric breakdown, and discharged energy density of a poly- (vinylidene fluoride-co-chlorotrifluoroethylene) copolymer with low temperature processing. J. Appl. Polym. Sci., 132, 42794(2015). https://doi.org/10.1002/app.42794

    [50] X. Wang, B. B. Qiao, S. B. Tan, W. Zhu, Z. C. Zhang. Tuning ferroelectric phase transition of PVDF by uniaxially stretching crosslinked PVDF films with CF=CH bonds. J. Mater. Chem. C, 8, 11426(2020). https://doi.org/10.1039/D0TC02559C

    [51] R. G. Jr, R. C. Capitao. Morphology and phase transition of high melt temperature crystallized poly (vinylidene fluoride). J. Mater. Sci., 35, 299(2000). https://doi.org/10.1023/A:1004737000016

    [52] P. Martins, A. C. Lopes, S. Lanceros-Mendez. Electroactive phases of poly (vinylidene fluoride): Determination, processing and applications. Prog. Polym. Sci., 39, 683(2014). https://doi.org/10.1016/j.progpolymsci.2013.07.006

    [53] B. Lin, L. H. Pan, D. L. Shi, H. K. Huang, F. A. He, K. H. Lam, H. J. Wu. Preparation and characterization of composites based on poly(vinylidene fluoride- co -chlorotrifluoroethylene) and carbon nanofillers: A comparative study of exfoliated graphite nanoplates and multi-walled carbon nanotubes. J. Mater. Sci., 54, 2256(2019). https://doi.org/10.1007/s10853-018-3005-x

    [54] H. Ye, L. Yang, W. Z. Shao, S. B. Sun, L. Zhen. Effect of electroactive phase transformation on electron structure and dielectric properties of uniaxial stretching poly (vinylidene fluoride) films. RSC. Adv., 3, 23730(2013). https://doi.org/10.1039/c3ra43966f

    [55] C. Tang, B. Li, L. Sun, B. Lively, W. Zhong. The effects of nanofillers, stretching and recrystallization on microstructure, phase transformation and dielectric properties in PVDF nanocomposites. Eur. Polym. J., 48, 1062(2012). https://doi.org/10.1016/j.eurpolymj.2012.04.002

    [56] Q. Wang, X. Q. Liu, Z. Qiang, Z. D. Hu, X. Cui, H. X. Wei, J. J. Hu, Y. M. Xia, S. H. Huang, J. M. Zhang, K. Fu, Y. W. Chen. Cellulose nanocrystal enhanced, high dielectric 3D printing composite resin for energy applications. Compos. Sci. Technol., 227, 109601(2022). https://doi.org/10.1016/j.compscitech.2022.109601

    [57] W. M. Xia, Z. J. Zhou, Y. Liu, Q. Wang, Z. C. Zhang. Crystal phase transition dependence of the energy storage performance of poly (vinylidene fluoride) and poly (vinylidene fluoride-exafluoropropene) copolymers. J. Appl. Polym. Sci., 135, 46306(2018). https://doi.org/10.1002/app.46306.

    Zhenji Zhou, Weimin Xia, Jing Liu, Na Tian, Caiyin You. Enhancement of permittivity and energy storage efficiency of poly (vinylidene fluoride-chlorotrifluoroethylene) by uniaxial stretching[J]. Journal of Advanced Dielectrics, 2023, 13(1): 2242002
    Download Citation