[2] KASHCHEEV I D. The use of refractories in the lining of rotary cement kilns[J]. Refract Ind Ceram, 2016, 56(5): 483-485.
[3] PETKO V, JONES P T, BOYDENS E, et al. Chemical corrosion mechanisms of magnesia-chromite and chrome-free refractory bricks by copper metal and anode slag[J]. J Eur Ceram Soc, 2007, 27(6): 2433-2444.
[6] ZHANG H F, HUANG H L, ZHANG L F, et al. The development of free of chrome of basic refractory materials for cement kiln and its applications in engineering[J]. Adv Mater Res, 2012, 578: 91-94.
[8] RODRIGUEZ E, CASTILLO G A, CONTRERAS J, et al. Hercynite and magnesium aluminate spinels acting as a ceramic bonding in an electrofused MgO-CaZrO3 refractory brick for the cement industry[J]. Ceram Int, 2012, 38(8): 6769-6775.
[9] LIU G, LI N, YAN W, et al. Composition and microstructure of a periclase-composite spinel brick used in the burning zone of a cement rotary kiln[J]. Ceram Int, 2014, 40(6): 8149-8155.
[11] PPADHI L N, SAHU P, SAHOO N, et al. A novel process for synthesis of iron-alumina spinel and its application in refractory for cement rotary kiln[J]. Indian Ceram Soc, 2017, 76(3): 196-201.
[12] CONTRERAS J E, CASTILLO G A, RODRIGUEZ E A, et al. Microstructure and properties of hercynite-magnesia-calcium zirconate refractory mixtures[J]. Mater Charact, 2005, 54(4-5): 354-359.
[14] CHEN J, YAN M, SU J, et al. The kiln coating formation mechanism of MgO-FeAl2O4 brick[J]. Ceram Int, 2016, 42(1): 569-575.