[1] P BHANDARI, B DUDIK, G C BIRUR et al. Mars science laboratory launch pad thermal control(2011).
[2] M T PAUKEN, G M KINSELLA, K S NOVAK. Mars exploration rover thermal test program overview(2004).
[3] S NOVAKK, J PHILLIPSC, G C BIRUR. Development of a thermal control architecture for the Mars exploration rovers. American Institute of Physics, 654, 194-205(2003).
[4] R NADALINI, F BODENDIECK. The thermal control system for a network mission on Mars:theexperience of the Netlander mission. Acta Astronautica, 58, 564-575(2006).
[5] B BIRURGPRADEEP. Mars science laboratory thermal control architecture, 20060043003(2006).
[6] W MARSHJ, A WAGNERC. Surface model of mars(1975).
[7] P BHANDARI, G BIRUR, M PAUKEN. Mars Science laboratory thermal control architecture, 20060043003(2006).
[8] S NOVAKK, J PHILLIPSC, G C BIRUR. Development of a thermal control architecture for the mars exploration rovers. American Institute of Physics, 654, 194-205(2003).
[10] B GANAPATHIG, G C BIRUR, G T TSUYUKI. Active heat rejection system on mars exploration rover designchanges from mars pathfinder. American Institute of Physics, 654, 206-217(2003).
[11] S NOVAKK, J PHILLIPSC, E T SUNADA et al. Mars exploration rover surface mission flight thermal performance, 20060042640(2006).
[12] P BHANDARI, P KARLMANN, K ANDERSON et al. CO2 Insulation for thermal control of the mars science laboratory, 17-21(2011).
[13] P BHANDARI, G C BIRUR, P KARLMANN et al. Mars science laboratory mechanically pumped fluid loop for thermal control design,implementation,and testing. SAE International Journalof Aerospace, 4, 299-310(2011).
[16] D YAGHOUBI, P MA. Integrated design results for the MSR DAC-0.0 Mars ascent vehicle, 978-988(2021).
[17] D YAGHOUBI, A SCHNELL. Mars ascent vehicle solid propulsion configuration, 1088-1098(2020).
[20] F P INCROPERA, D P DEWITT. Fundamentals of heat and mass transfer, 430, 492(2002).