• Chinese Optics Letters
  • Vol. 7, Issue 4, 04302 (2009)
Georgios Veronis, Zongfu Yu, Sükrü Ekin, David A., Mark L., and Shanhui Fan
Author Affiliations
  • Department of Electrical and Computer Engineering and Center for Computation and Technology, Louisiana State University, Baton Rouge, LA 70803, USA2 Ginzton Laboratory, Stanford University, Stanford, CA 94305, USA3 Geballe Laboratory of Advanced Materials, Stanford University, Stanford, CA 94305, USAE-mail: gveronis@lsu.edu
  • show less
    DOI: 10.3788/COL20090704.0302 Cite this Article Set citation alerts
    Georgios Veronis, Zongfu Yu, Sükrü Ekin, David A., Mark L., Shanhui Fan. Metal-dielectric-metal plasmonic waveguide devices for manipulating light at the nanoscale[J]. Chinese Optics Letters, 2009, 7(4): 04302 Copy Citation Text show less
    References

    [1] J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, Opt. Lett. 22, 475 (1997).

    [2] J.-C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J.-P. Goudonnet, Phys. Rev. B 60, 9061 (1999).

    [3] J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, Europhys. Lett. 60, 663 (2002).

    [4] M. L. Brongersma, J. W. Hartman, and H. A. Atwater, Phys. Rev. B 62, R16356 (2000).

    [5] S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, Nature Mater. 2, 229 (2003).

    [6] K. Tanaka and M. Tanaka, Appl. Phys. Lett. 82, 1158 (2003).

    [7] V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, Opt. Lett. 29, 1209 (2004).

    [8] E. N. Economou, Phys. Rev. 182, 539 (1969).

    [9] R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, J. Opt. Soc. Am. A 21, 2442 (2004).

    [10] J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, Phys. Rev. B 72, 075405 (2005).

    [11] J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, Phys. Rev. B 73, 035407 (2006).

    [12] S. E. Kocabas, G. Veronis, D. A. B. Miller, and S. Fan, Phys. Rev. B 79, 035120 (2009).

    [13] J. A. Dionne, H. J. Lezec, and H. A. Atwater, Nano Lett. 6, 1928 (2006).

    [14] H. J. Lezec, J. A. Dionne, and H. A. Atwater, Science 316, 430 (2007).

    [15] E. Verhagen, J. A. Dionne, L. K. Kuipers, H. A. Atwater, and A. Polman, Nano Lett. 8, 2925 (2008).

    [16] G. Veronis and S. Fan, Appl. Phys. Lett. 87, 131102 (2005).

    [17] S. E. Kocabas, G. Veronis, D. A. B. Miller, and S. Fan, IEEE J. Sel. Top. Quantum Electron. 14, 1462 (2008).

    [18] Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, Appl. Phys. Lett. 92, 041117 (2008).

    [19] G. Veronis and S. Fan, Opt. Express 15, 1211 (2007).

    [20] S.-D. Wu and E. N. Glytsis, J. Opt. Soc. Am. A 19, 2018 (2002).

    [21] G. Veronis, R. W. Dutton, and S. Fan, Opt. Lett. 29, 2288 (2004).

    [22] E. D. Palik, Handbook of Optical Constants of Solids (Academic, Orlando, 1985).

    [23] J. Jin, The Finite Element Method in Electromagnetics (Wiley, New York, 2002).

    [24] A. Taflove and S. C. Hagness, Computational Electrodynamics (3rd edn.) (Artech House, Boston, 2005).

    [25] C. Manolatou, S. G. Johnson, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, J. Lightwave Technol. 17, 1682 (1999).

    [26] S. Ramo, J. R. Whinnery, and T. V. Van Duzer, Fields and Waves in Communication Electronics (3rd edn.) (Wiley, New York, 1994).

    [27] D. M. Pozar, Microwave Engineering (2nd edn.) (Wiley, New York, 1998).

    [28] R. E. Collin, Foundations for Microwave Engineering (McGraw-Hill, New York, 1966).

    [29] D. J. Bergman and M. I. Stockman, Phys. Rev. Lett. 90, 027402 (2003).

    [30] N. M. Lawandy, Appl. Phys. Lett. 85, 5040 (2004).

    [31] J. Seidel, S. Grafstrom, and L. Eng, Phys. Rev. Lett. 94, 177401 (2005).

    [32] M. A. Noginov, G. Zhu, M. Bahoura, J. Adegoke, C. E. Small, B. A. Ritzo, V. P. Drachev, and V. M. Shalaev, Opt. Lett. 31, 3022 (2006).

    [33] M. P. Nezhad, K. Tetz, and Y. Fainman, Opt. Express 12, 4072 (2004).

    [34] S. A. Maier, Opt. Commun. 258, 295 (2006).

    [35] D. S. Citrin, Opt. Lett. 31, 98 (2006).

    [36] S. A. Ramakrishna and J. B. Pendry, Phys. Rev. B 67, 201101 (2003).

    [37] A. A. Govyadinov and V. A. Podolskiy, Phys. Rev. Lett. 97, 223902 (2006).

    [38] S. Xiao, L. Liu, and M. Qiu, Opt. Express 14, 2932 (2006).

    [39] A. Hosseini and Y. Massoud, Appl. Phys. Lett. 90, 181102 (2007).

    [40] H. A. Haus and Y. Lai, IEEE J. Quantum Electron. 28, 205 (1992).

    [41] T. Saitoh and T. Mukai, IEEE J. Quantum Electron. 23, 1010 (1987).

    [42] N. Kirstaedter, O. G. Schmidt, N. N. Ledentsov, D. Bimberg, V. M. Ustinov, A. Yu. Egorov, A. E. Zhukov, M. V. Maximov, P. S. Kop’ev, and Zh. I. Alferov, Appl. Phys. Lett. 69, 1226 (1996).

    [43] G. Veronis and S. Fan, Opt. Lett. 30, 3359 (2005).

    [44] M. Lipson, J. Lightwave Technol. 23, 4222 (2005).

    [45] P. Ginzburg, D. Arbel, and M. Orenstein, Opt. Lett. 31, 3288 (2006).

    [46] L. Chen, J. Shakya, and M. Lipson, Opt. Lett. 31, 2133 (2006).

    [47] M. Hochberg, T. Baehr-Jones, C. Walker, and A. Scherer, Opt. Express 12, 5481 (2004).

    [48] H. Henke, H. Früchting, and R. Winz, Radio Sci. 14, 11 (1979).

    [49] M. M. Spuhler, B. J. Offrein, G.-L. Bona, R. Germann, I. Massarek, and D. Erni, J. Lightwave Technol. 16, 1680 (1998).

    [50] B. Luyssaert, P. Vandersteegen, D. Taillaert, P. Dumon, W. Bogaerts, P. Bienstman, D. V. Thourhout, V. Wiaux, S. Beckx, and R. Baets, IEEE Photon. Technol. Lett. 17, 73 (2005).

    [51] B. Luyssaert, P. Bienstman, P. Vandersteegen, P. Dumon, and R. Baets, J. Lightwave Technol. 23, 2462 (2005).

    [52] K. Krishnakumar, Proc. SPIE 1196, 289 (1990).

    [53] B. Wang, J. Jiang, and G. P. Nordin, Opt. Express 12, 3313 (2004).

    CLP Journals

    [1] Ki Young Kim. Cutoff characteristics of dielectric-f illed circular holes embedded in dispersive plasmonic medium[J]. Chinese Optics Letters, 2009, 7(10): 904

    [2] Yaw-Dong Wu. New design of triplexer based on metal–insulator–metal plasmonic ring resonators[J]. Chinese Optics Letters, 2014, 12(11): 110607

    Data from CrossRef

    [1] Junxue Chen, Pei Wang, Zhuomin M. Zhang, Yonghua Lu, Hai Ming. Coupling between gap plasmon polariton and magnetic polariton in a metallic-dielectric multilayer structure. Physical Review E, 84, 026603(2011).

    [2] Yanxia Cui, Kin Hung Fung, Jun Xu, Jin Yi, Sailing He, Nicholas X. Fang. Exciting multiple plasmonic resonances by a double-layered metallic nanostructure. Journal of the Optical Society of America B, 28, 2827(2011).

    [3] Huan Yuan, Jie Huang, Jingmin Han, Jinping Zhang, Zehao Wang, Yang Deng, Jiagui Wu, Junbo Yang. Ultra-compact primary colors filter based on plasmonic digital metamaterials. Optics Communications, 483, 126575(2021).

    [4] Guoxi Wang, Hua Lu, Xueming Liu, Dong Mao, Lina Duan. Tunable multi-channel wavelength demultiplexer based on MIM plasmonic nanodisk resonators at telecommunication regime. Optics Express, 19, 3513(2011).

    [5] I. M. Fabbri. The Spiral Coaxial Cable. International Journal of Microwave Science and Technology, 2015, 1(2015).

    [6] Jae-Hoon Jung. Optimal Design of Dielectric-loaded Surface Plasmon Polariton Waveguide with Genetic Algorithm. Journal of the Optical Society of Korea, 14, 277(2010).

    [7] Raj K Vinnakota, Dentcho A. Genov. Terahertz Optoelectronic Switching with Surface Plasmon Polariton Diode. Conference on Lasers and Electro-Optics, FTh1B.4(2016).

    [8] Mohammad Reza Pav, Nosrat Granpayeh, Seyyed Poorya Hosseini, Aso Rahimzadegan. Ultracompact double tunable two-channel plasmonic filter and 4-channel multi/demultiplexer design based on aperture-coupled plasmonic slot cavity. Optics Communications, 437, 285(2019).

    [9] Diksha Chauhan, Zen Sbeah, Ram Prakash Dwivedi, Jean-Michel Nunzi, Mohindra Singh Thakur. An investigation and analysis of plasmonic modulators: a review. Journal of Optical Communications, 0(2022).

    [10] Ming Tian, Ping Lu, Li Chen, Chao Lv, Deming Liu. A subwavelength MIM waveguide resonator with an outer portion smooth bend structure. Optics Communications, 284, 4078(2011).

    [11] Amr A. E. Saleh, Jennifer A. Dionne. Waveguides with a silver lining: Low threshold gain and giant modal gain in active cylindrical and coaxial plasmonic devices. Physical Review B, 85, 045407(2012).

    [12] Bing Shen, Randy Polson, Rajesh Menon. Metamaterial-waveguide bends with effective bend radius

    [13] Pouya Dastmalchi, Georgios Veronis. Efficient design of nanoplasmonic waveguide devices using the space mapping algorithm. Optics Express, 21, 32160(2013).

    [14] Shun Kamada, Toshihiro Okamoto, Salah E. El-Zohary, Masanobu Haraguchi. Design optimization and fabrication of Mach- Zehnder interferometer based on MIM plasmonic waveguides. Optics Express, 24, 16224(2016).

    [15] Boris Desiatov, Ilya Goykhman, Uriel Levy. Plasmonic nanofocusing of light in an integrated silicon photonics platform. Optics Express, 19, 13150(2011).

    [16] Diego M. Solís, José M. Taboada, Fernando Obelleiro, Luis Landesa. Optimization of an optical wireless nanolink using directive nanoantennas. Optics Express, 21, 2369(2013).

    [17] Tong Kai, Wang Mei-yu, Wang Fu-cheng, Guo Jia. The two-dimensional hybrid surface plasma micro-cavity. Journal of Modern Optics, 65, 1595(2018).

    [18] D. M. Solis, J. M. Taboada, F. Obelleiro, L. Landesa, J. O. Rubinos. Fast surface integral equation methods for the optimization of nanoantennas. 2013 International Conference on Electromagnetics in Advanced Applications (ICEAA), 1186(2013).

    [19] Yaw-Dong Wu. High Transmission Efficiency Wavelength Division Multiplexer Based on Metal–Insulator–Metal Plasmonic Waveguides. Journal of Lightwave Technology, 32, 4844(2014).

    [20] Poonam Shokeen, Amit Jain, Avinashi Kapoor, Vinay Gupta. Thickness and Annealing Effects on the Particle Size of PLD Grown Ag Nanofilms. Plasmonics, 11, 669(2016).

    [21] Jia Hu Zhu, Xu Guang Huang, Xian Mei. Plasmonic Electro-Optical Switches Operating at Telecom Wavelengths. Plasmonics, 6, 605(2011).

    [22] Hsiang-Hao Wu, Bo Han Cheng, Yung-Chiang Lan. Coherent-Controlled All-Optical Devices Based on Plasmonic Resonant Tunneling Waveguides. Plasmonics, 12, 2005(2017).

    [23] Fu Sheng Ma, Chengkuo Lee. Optical Nanofilters Based on Meta-Atom Side-Coupled Plasmonics Metal- Insulator-Metal Waveguides. Journal of Lightwave Technology, 31, 2876(2013).

    [24] Jing Guo. Plasmon-induced transparency in metal–insulator–metal waveguide side-coupled with multiple cavities. Applied Optics, 53, 1604(2014).

    [25] Hua Lu, Xueming Liu, Dong Mao, Guoxi Wang. Plasmonic nanosensor based on Fano resonance in waveguide-coupled resonators. Optics Letters, 37, 3780(2012).

    [26] Raj K. Vinnakota, Zuoming Dong, Andrew F. Briggs, Seth R. Bank, Daniel Wasserman, Dentcho A. Genov. Plasmonic electro-optic modulator based on degenerate semiconductor interfaces. Nanophotonics, 9, 1105(2020).

    [27] Mikhail F. Limonov. Fano resonance for applications. Advances in Optics and Photonics, 13, 703(2021).

    [28] Fatemeh Moharrami, Mohammad Sadegh Abrishamian. Plasmonic multi-channel filters with separately tunable pass-bands. Journal of Optics, 15, 075001(2013).

    [29] Jin Tao, Xu Guang Huang, Jia Hu Zhu. A wavelength demultiplexing structure based on metal-dielectric-metal plasmonic nano-capillary resonators. Optics Express, 18, 11111(2010).

    [30] Mark L. Brongersma. Introductory lecture: nanoplasmonics. Faraday Discussions, 178, 9(2015).

    [31] Shun Wang, Yi Xu, Sheng Lan, Lijun Wu. Flat-Top Reflection Characteristics in Metal-Dielectric-Metal Plasmonic Waveguide Structure Side Coupled with Cascaded Double Cavities. Plasmonics, 6, 689(2011).

    [32] Yongkang Gong, Leiran Wang, Xiaohong Hu, Xiaohui Li, Xueming Liu. Broad-bandgap and low-sidelobe surface plasmon polariton reflector with Bragg-grating-based MIM waveguide. Optics Express, 17, 13727(2009).

    [33] Taiming Sun, Zhixiang Deng, Jiabing Sheng, Zhiyong Chen, Weihua Zhu, Wei Guo, Xinlin Wang. A Compact Optical Switch via Plasmonics of Subwavelength Circular-Sharp Hole Arrays in Metal Films. Annalen der Physik, 530, 1700299(2018).

    [34] Santosh Chauhan, J. Parashar, P.K. Purohit. Excitation of slow electromagnetic mode by an electron beam in a nanoparticle filled waveguide. Optik, 126, 320(2015).

    [35] Fan Yang, Hao Tian. Surface plasmon polaritons mode conversion via a coupled plasmonic system. Journal of Optics, 18, 055005(2016).

    [36] Sushmita Paul, Mahua Bera, Mina Ray. Parametric Analysis of Spectral Fano Lineshape for Plasmonic Waveguide-Coupled Dual Nanoresonator. Journal of Lightwave Technology, 33, 2824(2015).

    [37] Jianping Guo, Jiahu Zhu, Wen Zhou. Tunable plasmonic filter and variable optical attenuator based on ring metal–insulator–metal waveguide. The Journal of Engineering, 2013, 15(2013).

    [38] Raj K. Vinnakota, Dentcho A. Genov. Terahertz Optoelectronics with Surface Plasmon Polariton Diode. Scientific Reports, 4, 4899(2015).

    [39] Logeeswaran VJ, Jinyong Oh, Avinash P. Nayak, Aaron M. Katzenmeyer, Kristin H. Gilchrist, Sonia Grego, Nobuhiko P. Kobayashi, Shih-Yuan Wang, A. Alec Talin, Nibir K. Dhar, M. Saif Islam. A Perspective on Nanowire Photodetectors: Current Status, Future Challenges, and Opportunities. IEEE Journal of Selected Topics in Quantum Electronics, 17, 1002(2011).

    [40] Jia Hu Zhu, Xu Guang Huang, Xian Mei. A Laser Structure Based on Metal-Dielectric-Metal Plasmonic Nanocavity. Plasmonics, 7, 93(2012).

    [41] Pouya Dastmalchi, Georgios Veronis. Efficient design of nanoscale metal-dielectric-metal plasmonic waveguide devices. Frontiers in Optics 2013, FW1E.4(2013).

    [42] Can Yi, Ruohua Gao, Qi Liu, Chaohua Tan, Yang Jiao. Storage and retrieval of nonlinear surface plasmon polariton solitons via electromagnetically induced transparency in a metal–dielectric–metal waveguide. The European Physical Journal D, 75, 222(2021).

    [43] Sidra Farid, Katelyn Dixon, Moein Shayegannia, Remy H. H. Ko, Mahdi Safari, Joel Y. Y. Loh, Nazir P. Kherani. Rainbows at the End of Subwavelength Discontinuities: Plasmonic Light Trapping for Sensing Applications. Advanced Optical Materials, 9, 2100695(2021).

    [44] Jianping Guo, Jiahu Zhu, Wen Zhou, Xuguang Huang. A plasmonic electro-optical variable optical attenuator based on side-coupled metal–dielectric–metal structure. Optics Communications, 294, 405(2013).

    [45] Wenshan Cai, Wonseok Shin, Shanhui Fan, Mark L. Brongersma. Elements for Plasmonic Nanocircuits with Three-Dimensional Slot Waveguides. Advanced Materials, 22, 5120(2010).

    [46] Michael Garner. Outside System Connectivity. 2021 IEEE International Roadmap for Devices and Systems Outbriefs, 01(2021).

    [47] Zhaojian Zhang, Junbo Yang, Yunxin Han, Xin He, Jie Huang, Dingbo Chen. Direct Coupling Strategy in Plasmonic Nanocircuits for Low Loss and Easy Fabrication. Plasmonics, 15, 761(2020).

    [48] Shuai Kang, Jinhui Yuan, Zhe Kang, Xianting Zhang, Xue Kang, Zheng Guo, Feng Li, Binbin Yan, Kuiru Wang, Xinzhu Sang, Chongxiu Yu. All-optical quantization scheme by slicing the supercontinuum in a chalcogenide horizontal slot waveguide. Journal of Optics, 17, 085502(2015).

    [49] Aliaa G Mohamed, Hussein A ElSayed, Ahmed Mehaney, Arafa H Aly, Walied Sabra. The transmissivity of one-dimensional photonic crystals comprising three phases nanocomposite layer for optical switching purposes. Physica Scripta, 96, 115504(2021).

    [50] Xi Liu, Xiaoling Shi, Lei Liao, Zhiyong Fan, Johnny C. Ho. Nanomaterials, Polymers, and Devices, 413(2015).

    [51] Jia-Hu Zhu, Xu-Guang Huang, Xian Mei. High-Resolution Plasmonic Refractive-Index Sensor Based on a Metal-Insulator-Metal Structure. Chinese Physics Letters, 28, 054205(2011).

    [52] Maxim Sukharev, Abraham Nitzan. Optics of exciton-plasmon nanomaterials. Journal of Physics: Condensed Matter, 29, 443003(2017).

    [53] Zhenning Gu, Qi Liu, Yong Zhou, Chaohua Tan. Symmetric and antisymmetric surface plasmon polariton solitons in a metal-dielectric-metal waveguide with incoherent pumping. The European Physical Journal D, 74, 78(2020).

    [54] Zi-Ming Meng, Zhi-Yuan Li. Control of Fano resonances in photonic crystal nanobeams side-coupled with nanobeam cavities and their applications to refractive index sensing. Journal of Physics D: Applied Physics, 51, 095106(2018).

    [55] Xiangjun Li, Jian Song, John X.J. Zhang. Design of terahertz metal-dielectric-metal waveguide with microfluidic sensing stub. Optics Communications, 361, 130(2016).

    [56] K. Anglin, D.C. Adams, T. Ribaudo, D. Wasserman. Toothed Mid-Infrared Metal-Insulator-Metal Waveguides. CLEO:2011 - Laser Applications to Photonic Applications, CTuS4(2011).

    [57] D. M. Solis, F. Obelleiro, J. O. Rubinos, J. M. Taboada, L. Landesa. Directive nanoantennas for optical wireless links. 2013 IEEE Antennas and Propagation Society International Symposium (APSURSI), 134(2013).

    [58] X. Gao, L. Ning. Optical switch effect of metal–dielectric–metal plasmonic waveguide coupled with stub structure. Optik, 123, 1326(2012).

    [59] Raj K. Vinnakota, Dentcho A. Genov. Active Control of Charge Density Waves at Degenerate Semiconductor Interfaces. Scientific Reports, 7, 10778(2017).

    [60] David A. B. Miller. Nanometallic concentration for enhanced photodetection. IEEE Photonic Society 24th Annual Meeting, 664(2011).

    [61] Mark L. Brongersma. Plasmonic Photodetectors, Photovoltaics, and Hot-Electron Devices. Proceedings of the IEEE, 104, 2349(2016).

    [62] Yaw-Dong Wu. HIGH EFFICIENCY MULTI-FUNCTIONAL ALL-OPTICAL LOGIC GATES BASED ON MIM PLASMONIC WAVEGUIDE STRUCTURE WITH THE KERR-TYPE NONLINEAR NANO-RING RESONATORS. Progress In Electromagnetics Research, 170, 79(2021).

    [63] Pavel Melentiev, Arthur Kuzin, Dmitry Negrov, Victor Balykin. SPP waveguide based on the Goos–H?nchen effect. Optics Letters, 46, 4029(2021).

    [64] GAIGE ZHENG, LINHUA XU, YUNYUN CHEN, WEI SU, YUZHU LIU. Beam filter and splitter based on surface plasmon propagation in ring metal heterowaveguide. Pramana, 83, 995(2014).

    Georgios Veronis, Zongfu Yu, Sükrü Ekin, David A., Mark L., Shanhui Fan. Metal-dielectric-metal plasmonic waveguide devices for manipulating light at the nanoscale[J]. Chinese Optics Letters, 2009, 7(4): 04302
    Download Citation