• Acta Physica Sinica
  • Vol. 68, Issue 24, 246102-1 (2019)
Yun-Tian Wang, Xiang-Guo Zeng*, and Xin Yang
DOI: 10.7498/aps.68.20190920 Cite this Article
Yun-Tian Wang, Xiang-Guo Zeng, Xin Yang. Molecular dynamics simulation of effect of temperature on void nucleation and growth of single crystal iron at a high strain rate[J]. Acta Physica Sinica, 2019, 68(24): 246102-1 Copy Citation Text show less
Model of single crystal iron under triaxial tension (atoms are colored by CNA).单晶铁三轴拉伸模型
Fig. 1. Model of single crystal iron under triaxial tension (atoms are colored by CNA).单晶铁三轴拉伸模型
Tensile stress as a function of time at 100–1100 K.100—1100 K温度下拉应力随时间的变化
Fig. 2. Tensile stress as a function of time at 100–1100 K.100—1100 K温度下拉应力随时间的变化
Relationship of peak pressure and temperature.拉应力峰值随温度的变化
Fig. 3. Relationship of peak pressure and temperature.拉应力峰值随温度的变化
Void volume fraction as a function of time at 100– 1100 K.100—1100 K温度下孔洞体积分数随时间的变化
Fig. 4. Void volume fraction as a function of time at 100– 1100 K.100—1100 K温度下孔洞体积分数随时间的变化
Void nucleation time at 100–1100 K.100—1100 K温度下孔洞成核时间
Fig. 5. Void nucleation time at 100–1100 K.100—1100 K温度下孔洞成核时间
Distribution of voids at 100–1100 K (void volume fraction is 0.1).100—1100 K温度下内部孔洞分布(孔洞体积分数为0.1时)
Fig. 6. Distribution of voids at 100–1100 K (void volume fraction is 0.1).100—1100 K温度下内部孔洞分布(孔洞体积分数为0.1时)
Void volume fraction as a function of time at 100−700 K: (a) 100 K; (b) 300 K; (c) 500 K; (d) 700 K; (e) 900 K; (f) 1100 K.100−1100 K温度下孔洞体积分数与拉应力的关系 (a) 100 K; (b) 300 K; (c) 500 K; (d) 700 K; (e) 900 K; (f) 1100 K
Fig. 7. Void volume fraction as a function of time at 100−700 K: (a) 100 K; (b) 300 K; (c) 500 K; (d) 700 K; (e) 900 K; (f) 1100 K.100−1100 K温度下孔洞体积分数与拉应力的关系 (a) 100 K; (b) 300 K; (c) 500 K; (d) 700 K; (e) 900 K; (f) 1100 K
Void distribution on the second-peak of tensile stress at 100−700 K.100−700 K温度下拉应力时程曲线第二峰值点孔洞分布
Fig. 8. Void distribution on the second-peak of tensile stress at 100−700 K.100−700 K温度下拉应力时程曲线第二峰值点孔洞分布
Evolution of dislocation density as a function of time at 100−1100 K: (a) 100 K; (b) 300 K; (c) 500 K; (d) 700 K; (e) 900 K; (f) 1100 K.100−1100 K温度下位错密度变化情况 (a) 100 K; (b) 300 K; (c) 500 K; (d) 700 K; (e) 900 K; (f) 1100 K
Fig. 9. Evolution of dislocation density as a function of time at 100−1100 K: (a) 100 K; (b) 300 K; (c) 500 K; (d) 700 K; (e) 900 K; (f) 1100 K.100−1100 K温度下位错密度变化情况 (a) 100 K; (b) 300 K; (c) 500 K; (d) 700 K; (e) 900 K; (f) 1100 K
Radial distribution function of the system at 100−1100 K: (a) 100 K; (b) 300 K; (c) 500 K; (d) 700 K; (e) 900 K; (f) 1100 K.100−1100 K温度下径向分布函数变化情况 (a) 100 K; (b) 300 K; (c) 500 K; (d) 700 K; (e) 900 K; (f) 1100 K
Fig. 10. Radial distribution function of the system at 100−1100 K: (a) 100 K; (b) 300 K; (c) 500 K; (d) 700 K; (e) 900 K; (f) 1100 K.100−1100 K温度下径向分布函数变化情况 (a) 100 K; (b) 300 K; (c) 500 K; (d) 700 K; (e) 900 K; (f) 1100 K
Snapshots for the structural changes at 100−1100 K: (a) 100 K; (b) 300 K; (c) 500 K; (d) 700 K; (e) 900 K; (f) 1100 K.100−1100 K温度下内部结构变化 (a) 100 K; (b) 300 K; (c) 500 K; (d) 700 K; (e) 900 K; (f) 1100 K
Fig. 11. Snapshots for the structural changes at 100−1100 K: (a) 100 K; (b) 300 K; (c) 500 K; (d) 700 K; (e) 900 K; (f) 1100 K.100−1100 K温度下内部结构变化 (a) 100 K; (b) 300 K; (c) 500 K; (d) 700 K; (e) 900 K; (f) 1100 K
Crystal structure fraction as a function of time at 100−1100 K: (a) 100 K; (b) 300 K; (c) 500 K; (d) 700 K; (e) 900 K; (f) 1100 K.100−1100 K温度下内部晶体结构占比 (a) 100 K; (b) 300 K; (c) 500 K; (d) 700 K; (e) 900 K; (f) 1100 K
Fig. 12. Crystal structure fraction as a function of time at 100−1100 K: (a) 100 K; (b) 300 K; (c) 500 K; (d) 700 K; (e) 900 K; (f) 1100 K.100−1100 K温度下内部晶体结构占比 (a) 100 K; (b) 300 K; (c) 500 K; (d) 700 K; (e) 900 K; (f) 1100 K
Structural changes at different time at 300 K.300 K温度下系统内部结构变化
Fig. 13. Structural changes at different time at 300 K.300 K温度下系统内部结构变化
Bond energy of iron at 300−1100 K.300−1100 K温度下铁原子键能
Fig. 14. Bond energy of iron at 300−1100 K.300−1100 K温度下铁原子键能
Potential energy of the system at 100−1100 K.100−1100 K温度下系统势能
Fig. 15. Potential energy of the system at 100−1100 K.100−1100 K温度下系统势能
Comparison of void volume fraction between the NAG model and MD at 100−1100 K: (a) 100 K; (b) 300 K; (c) 500 K; (d) 700 K; (e) 900 K; (f) 1100 K.100−1100 K温度下NAG与MD的孔洞体积分数结果的对比 (a) 100 K; (b) 300 K; (c) 500 K; (d) 700 K; (e) 900 K; (f) 1100 K
Fig. 16. Comparison of void volume fraction between the NAG model and MD at 100−1100 K: (a) 100 K; (b) 300 K; (c) 500 K; (d) 700 K; (e) 900 K; (f) 1100 K.100−1100 K温度下NAG与MD的孔洞体积分数结果的对比 (a) 100 K; (b) 300 K; (c) 500 K; (d) 700 K; (e) 900 K; (f) 1100 K
温度/K时间/ps
ABCD
10015.716.517.519.1
30013.414.515.417.9
50012.613.814.917.7
70013.113.914.617.6
Table 1.

Four characteristic points time at 100– 700 K.

100—700 K温度下四个特征点时间

Pn0/Pa P1/Pa ${\dot N_0}$/m–3·s–1Pg0/Pa η/Pa·s Rn/m Σ
100 K1.61 × 10101.42 × 1077.10 × 10152.75 × 1091.72 × 10–13.1 × 10–100.15
300 K1.55 × 10102.35 × 1071.22 × 10152.48 × 1092.20 × 10–13.1 × 10–100.18
500 K1.51 × 10101.18 × 1075.91 × 10142.15 × 1091.83 × 10–13.1 × 10–100.14
700 K1.50 × 10103.31 × 1071.37 × 10162.02 × 1092.17 × 10–13.1 × 10–100.17
900 K1.46 × 10102.76 × 1073.29 × 10151.98 × 1092.53 × 10–13.1 × 10–100.12
1100 K1.33 × 10101.87 × 1071.88 × 10141.95 × 1092.11 × 10–13.1 × 10–100.17
低碳钢[54]1.12 × 1091.0 × 1082.5 × 10142.0 × 1082.778 × 1023.0 × 10–5
Table 2.

Best-fit NAG parameters at 100−1100 K.

100−1100 K温度下NAG模型最佳拟合参数

Yun-Tian Wang, Xiang-Guo Zeng, Xin Yang. Molecular dynamics simulation of effect of temperature on void nucleation and growth of single crystal iron at a high strain rate[J]. Acta Physica Sinica, 2019, 68(24): 246102-1
Download Citation