• Frontiers of Optoelectronics
  • Vol. 13, Issue 4, 381 (2020)
Jonas OGIEN1, Anthony DAURES1, Maxime CAZALAS1, Jean-Luc PERROT2, and Arnaud DUBOIS3、*
Author Affiliations
  • 1DAMAE Medical, Paris 75013, France
  • 2CHU St-Etienne, Service Dermatologie, Saint-Etienne 42055, France
  • 3Université Paris-Saclay, Institut d’Optique Graduate School, CNRS, Laboratoire Charles Fabry, Palaiseau 91127, France
  • show less
    DOI: 10.1007/s12200-020-1096-x Cite this Article
    Jonas OGIEN, Anthony DAURES, Maxime CAZALAS, Jean-Luc PERROT, Arnaud DUBOIS. Line-field confocal optical coherence tomography for three-dimensional skin imaging[J]. Frontiers of Optoelectronics, 2020, 13(4): 381 Copy Citation Text show less
    References

    [1] Fercher A F. Optical coherence tomography. Journal of Biomedical Optics, 1996, 1(2): 157-173

    [2] Podoleanu A G. Optical coherence tomography. Journal of Microscopy, 2012, 247(3): 209-219

    [3] Zysk A M, Nguyen F T, Oldenburg A L, Marks D L, Boppart S A. Optical coherence tomography: a review of clinical development from bench to bedside. Journal of Biomedical Optics, 2007, 12(5): 051403

    [4] Schuman J S, Puliafito C A, Fujimoto J G, Duker J S. Optical Coherence Tomography of Ocular Diseases. 3rd ed. New Jersey: Slack Inc., 2013

    [5] Bezerra H G, Costa M A, Guagliumi G, Rollins A M, Simon D I. Intracoronary optical coherence tomography: a comprehensive review clinical and research applications. JACC: Cardiovascular Interventions, 2009, 2(11): 1035-1046

    [6] Adler D C, Chen Y, Huber R, Schmitt J, Connolly J, Fujimoto J G. Three-dimensional endomicroscopy using optical coherence tomography. Nature Photonics, 2007, 1(12): 709-716

    [7] Yu X, Ding Q, Hu C, Mu G, Deng Y, Luo Y, Yuan Z, Yu H, Liu L. Evaluating micro-optical coherence tomography as a feasible imaging tool for pancreatic disease diagnosis. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25(1): 1-8

    [8] Men J, Huang Y, Solanki J, Zeng X, Alex A, Jerwick J, Zhang Z, Tanzi R E, Li A, Zhou C. Optical coherence tomography for brain imaging and developmental biology. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22(4): 120-132

    [9] an Y, Xia Y, Zhang X, Sun Y, Tang J, Zhang L, Liao H. Optical coherence tomography for precision brain imaging, neurosurgical guidance and minimally invasive theranostics. Bioscience Trends, 2018, 12(1): 12-23

    [10] Levine A,Wang K, Markowitz O. Optical coherence tomography in the diagnosis of skin cancer. Dermatologic Clinics, 2017, 35(4): 465-488

    [11] Drexler W, Morgner U, K?rtner F X, Pitris C, Boppart S A, Li X D, Ippen E P, Fujimoto J G. In vivo ultrahigh-resolution optical coherence tomography. Optics Letters, 1999, 24(17): 1221-1223

    [12] Povazay B, Bizheva K, Unterhuber A, Hermann B, Sattmann H, Fercher A F, Drexler W, Apolonski A, Wadsworth W J, Knight J C, Russell P S J, Vetterlein M, Scherzer E. Submicrometer axial resolution optical coherence tomography. Optics Letters, 2002, 27 (20): 1800-1802

    [13] Wang Y, Zhao Y, Nelson J S, Chen Z, Windeler R S. Ultrahighresolution optical coherence tomography by broadband continuum generation from a photonic crystal fiber. Optics Letters, 2003, 28(3): 182-184

    [14] Aguirre A, Nishizawa N, Fujimoto J, Seitz W, Lederer M, Kopf D. Continuum generation in a novel photonic crystal fiber for ultrahigh resolution optical coherence tomography at 800 nm and 1300 nm. Optics Express, 2006, 14(3): 1145-1160

    [15] Leitgeb R A. En face optical coherence tomography: a technology review. Biomedical Optics Express, 2019, 10(5): 2177-2201

    [16] Choma M, Sarunic M, Yang C, Izatt J. Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Optics Express, 2003, 11(18): 2183-2189

    [17] Lee K S, Rolland J P. Bessel beam spectral-domain high-resolution optical coherence tomography with micro-optic axicon providing extended focusing range. Optics Letters, 2008, 33(15): 1696-1698

    [18] Leitgeb R A, Villiger M, Bachmann A H, Steinmann L, Lasser T. Extended focus depth for Fourier domain optical coherence microscopy. Optics Letters, 2006, 31(16): 2450-2452

    [19] Tamborski S, Lyu H C, Dolezyczek H, Malinowska M, Wilczynski G, Szlag D, Lasser T, Wojtkowski M, Szkulmowski M. Extendedfocus optical coherence microscopy for high-resolution imaging of the murine brain. Biomedical Optics Express, 2016, 7(11): 4400- 4414

    [20] Liu L, Chu K K, Houser G H, Diephuis B J, Li Y, Wilsterman E J, Shastry S, Dierksen G, Birket S E, Mazur M, Byan-Parker S, Grizzle WE, Sorscher E J, Rowe S M, Tearney G J. Method for quantitative study of airway functional microanatomy using micro-optical coherence tomography. PLoS One, 2013, 8(1): e54473

    [21] Liu L, Liu C, Howe W C, Sheppard C J R, Chen N. Binaryphase spatial filter for real-time swept-source optical coherence microscopy. Optics Letters, 2007, 32(16): 2375-2377

    [22] Yin B, Chu K K, Liang C P, Singh K, Reddy R, Tearney G J. μOCT imaging using depth of focus extension by self-imaging wavefront division in a common-path fiber optic probe. Optics Express, 2016, 24(5): 5555-5564

    [23] Ralston T S, Marks D L, Carney P S, Boppart S A. Interferometric synthetic aperture microscopy. Nature Physics, 2007, 3(2): 129-134

    [24] Coquoz S, Bouwens A, Marchand P J, Extermann J, Lasser T. Interferometric synthetic aperture microscopy for extended focus optical coherence microscopy. Optics Express, 2017, 25(24): 30807-30819

    [25] Yu L, Rao B, Zhang J, Su J, Wang Q, Guo S, Chen Z. Improved lateral resolution in optical coherence tomography by digital focusing using two-dimensional numerical diffraction method. Optics Express, 2007, 15(12): 7634-7641

    [26] Fechtig D J, Kumar A, Drexler W, Leitgeb R A. Full range line-field parallel swept source imaging utilizing digital refocusing. Journal of Modern Optics, 2015, 62(21): 1801-1807

    [27] Mo J, de Groot M, de Boer J F. Focus-extension by depth-encoded synthetic aperture in optical coherence tomography. Optics Express, 2013, 21(8): 10048-10061

    [28] Holmes J. Theory and applications of multi-beam OCT. In: Proceedings of the 1st Canterbury Workshop on Optical Coherence Tomography and Adaptive Optics. Canterbury: SPIE, 2008

    [29] Holmes J, Hattersley S, Stone N, Bazant-Hegemark F, Barr H. Multi-channel fourier domain OCT system with superior lateral resolution for biomedical applications. In: Proceedings of Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine XII. San Jose: SPIE, 2008

    [30] Yi L, Sun L, Ding W. Multifocal spectral-domain optical coherence tomography based on Bessel beam for extended imaging depth. Journal of Biomedical Optics, 2017, 22(10): 1-8

    [31] Li J, Luo Y, Wang X, Wang N, Bo E, Chen S, Chen S, Chen S, Tsai M T, Liu L. Extending the depth of focus of fiber-optic optical coherence tomography using a chromatic dual-focus design. Applied Optics, 2018, 57(21): 6040-6046

    [32] Nam A S, Ren J, Bouma B E, Vakoc B J. Demonstration of triband multi-focal imaging with optical coherence tomography. Applied Sciences (Basel, Switzerland), 2018, 8(12): 2395

    [33] Huber R,Wojtkowski M, Fujimoto J G, Jiang J Y, Cable A E. Threedimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm. Optics Express, 2005, 13(26): 10523-10538

    [34] Rolland J P, Meemon P, Murali S, Thompson K P, Lee K S. Gaborbased fusion technique for optical coherence microscopy. Optics Express, 2010, 18(4): 3632-3642

    [35] Lee K S, Thompson K P, Meemon P, Rolland J P. Cellular resolution optical coherence microscopy with high acquisition speed for in-vivo human skin volumetric imaging. Optics Letters, 2011, 36 (12): 2221-2223

    [36] Liu S, Mulligan J A, Adie S G. Volumetric optical coherence microscopy with a high space-bandwidth-time product enabled by hybrid adaptive optics. Biomedical Optics Express, 2018, 9(7): 3137-3152

    [37] Schmitt J M, Lee S L, Yung K M. An optical coherence microscope with enhanced resolving power in thick tissue. Optics Communications, 1997, 142(4-6): 203-207

    [38] Lexer F, Hitzenberger C K, Drexler W, Molebny S, Sattmann H, Sticker M, Fercher A F. Dynamic coherent focus OCT with depthindependent transversal resolution. Journal of Modern Optics, 1999, 46(3): 541-553

    [39] Qi P A, Himmer P A, Gordon M L, Yang V X D, Dickensheets D L, Vitkin I A. Dynamic focus control in high-speed optical coherence tomography based on a microelectromechanical mirror. Optics Communications, 2004, 232(1-6): 123-128

    [40] Divetia A, Hsieh T H, Zhang J, Chen Z, Bachman M, Li G P. Dynamically focused optical coherence tomography for endoscopic applications. Applied Physics Letters, 2005, 86(10): 103902

    [41] Yang V X D, Munce N, Pekar J, Gordon M L, Lo S, Marcon N E, Wilson B C, Vitkin I A. Micromachined array tip for multifocus fiber-based optical coherence tomography. Optics Letters, 2004, 29 (15): 1754-1756

    [42] Dubois A, Levecq O, Azimani H, Davis A, Ogien J, Siret D, Barut A. Line-field confocal time-domain optical coherence tomography with dynamic focusing. Optics Express, 2018, 26(26): 33534- 33542

    [43] Dubois A, Levecq O, Azimani H, Siret D, Barut A, Suppa M, Del Marmol V, Malvehy J, Cinotti E, Rubegni P, Perrot J L. Line-field confocal optical coherence tomography for high-resolution noninvasive imaging of skin tumors. Journal of Biomedical Optics, 2018, 23(10): 1-9

    [44] Ogien J, Siret D, Levecq O, Azimani H, David A, Xue W, Perrot J L, Dubois A. Line-field confocal optical coherence tomography. In: Proceedings of Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXIII. San Francisco: SPIE, 2019

    [45] Davis A, Levecq O, Azimani H, Siret D, Dubois A. Simultaneous dual-band line-field confocal optical coherence tomography: application to skin imaging. Biomedical Optics Express, 2019, 10 (2): 694-706

    [46] Dubois A, Xue W, Levecq O, Bulkin P, Coutrot A L, Ogien J. Mirau-based line-field confocal optical coherence tomography. Optics Express, 2020, 28(6): 7918-7927

    [47] Ogien J, Levecq O, Azimani H, Dubois A. Dual-mode line-field confocal optical coherence tomography for ultrahigh-resolution vertical and horizontal section imaging of human skin in vivo. Biomedical Optics Express, 2020, 11(3): 1327-1335

    [48] Larkin K G. Efficient nonlinear algorithm for envelope detection in white light interferometry. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 1996, 13(4): 832-843

    [49] Cazalas M, Levecq O, Azimani H, Siret D, Barut A, Suppa M, del Marmol V, Malvehy J, Cinotti E, Rubegni P, Perrot J L, Dubois A. Skin lesion imaging with line-field confocal optical coherence tomography. In: Proceedings of Photonics in Dermatology and Plastic Surgery 2019. San Francisco: SPIE, 2019

    [50] Dejonckheere G, Suppa M, Marmol V, Meyer T, Stockfleth E. The actinic dysplasia syndrome-diagnostic approaches defining a new concept in field carcinogenesis with multiple cSCC. Journal of the European Academy of Dermatology and Venereology, 2019, 33 (S8): 16-20

    [51] Pedrazzani M, Breugnot J, Rouaud-Tinguely P, Cazalas M, Davis A, Bordes S, Dubois A, Closs B. Comparison of line-field confocal optical coherence tomography images with histological sections: validation of a new method for in vivo and non-invasive quantification of superficial dermis thickness. Skin Research and Technology, 2020, 26(3): 398-404

    [52] Ogien J, Levecq O, Cazalas M, Suppa M, del Marmol V, Malvehy J, Cinotti E, Rubegni P, Perrot J L, Dubois A. Handheld line-field confocal optical coherence tomography for dermatology. In: Proceedings of Photonics in Dermatology and Plastic Surgery 2020. San Francisco: SPIE, 2020

    [53] Monnier J, Tognetti L, Miyamoto M, Suppa M, Cinotti E, Fontaine M, Perez J, Orte Cano C, Yélamos O, Puig S, Dubois A, Rubegni P, Marmol V, Malvehy J, Perrot J L. In vivo characterization of healthy human skin with a novel, non-invasive imaging technique: line-field confocal optical coherence tomography. Journal of the European Academy of Dermatology and Venereology, 2020, doi:10.1111/ jdv.16857

    [54] Ruini C, Sattler E. Line-field confocal optical coherence tomography: the golden goose? Aktuelle Dermatologie, 2020, 46: 148- 151

    [55] Tognetti L, Rizzo A, Fiorani D, Cinotti E, Perrot J L, Rubegni P. New findings in non-invasive imaging of aquagenic keratoderma: Line-field optical coherence tomography, dermoscopy and reflectance confocal microscopy. Skin Research and Technology, 2020, doi:10.1111/srt.12882

    [56] Ruini C, Schuh S, Sattler E, Welzel J. Line-field confocal optical coherence tomography-practical applications in dermatology and comparison with established imaging methods. Skin Research and Technology, 2020, doi:10.1111/srt.12949

    [57] Tognetti L, Fiorani D, Cinotti E, Rubegni P. Tridimensional skin imaging in aquagenic keratoderma: virtual histology by line-field confocal optical coherence tomography. International Journal of Dermatology, 2020, doi:10.1111/ijd.15169

    [58] Tognetti L, Fiorani D, Suppa M, Cinotti E, Fontaine M, Marmol V D, Rubegni P, Perrot J L. Examination of circumscribed palmar hypokeratosis with line-field confocal optical coherence tomography: dermoscopic, ultrasonographic and histopathologic correlates. Indian Journal of Dermatology, Venereology and Leprology, 2020, 86(2): 206-208

    [59] Tognetti L, Carraro A, Lamberti A, Cinotti E, Suppa M, Luc Perrot J, Rubegni P. Kaposi sarcoma of the glans: new findings by line field confocal optical coherence tomography examination. Skin Research and Technology, 2020, doi:10.1111/srt.12938

    [60] Ruini C, Schuh S, Pellacani G, French L,Welzel J, Sattler E. In vivo imaging of Sarcoptes scabiei infestation using line-field confocal optical coherence tomography. Journal of the European Academy of Dermatology and Venereology, 2020, doi:10.1111/jdv.16671

    [61] Rennie D. Nailfold dermatoscopy in general practice. Australian Family Physician, 2015, 44(11): 809-812

    [62] Xue W, Ogien J, Levecq O, Dubois A. Line-field confocal optical coherence tomography based on a Mirau interferometer. In: Proceedings of Unconventional Optical Imaging II. SPIE, 2020

    Jonas OGIEN, Anthony DAURES, Maxime CAZALAS, Jean-Luc PERROT, Arnaud DUBOIS. Line-field confocal optical coherence tomography for three-dimensional skin imaging[J]. Frontiers of Optoelectronics, 2020, 13(4): 381
    Download Citation