• Journal of Advanced Dielectrics
  • Vol. 11, Issue 4, 2150015 (2021)
[in Chinese]1 and [in Chinese]2、*
Author Affiliations
  • 1Department of Physics, Aliah University, Newtown Campus Kolkata 700160, India
  • 2Department of Physics, Darjeeling Govt. College Darjeeling 734101, India
  • show less
    DOI: 10.1142/s2010135x21500156 Cite this Article
    [in Chinese], [in Chinese]. Dielectric, impedance, modulus spectroscopy and AC conductivity studies on novel organic ferroelectric diisopropylammonium chloride (dipaCl)[J]. Journal of Advanced Dielectrics, 2021, 11(4): 2150015 Copy Citation Text show less
    References

    [1] C. A. Paz de Araujo and G. W. Taylor, Ferroelectrics 116, 215 (2011).

    [2] H. Y. Ye, Y. Zhang, S. Noro, K. Kubo, M. Yoshitake, Z. Q. Liu, H. L. Cai, D. W. Fu, H. Yoshikawa, K. Awaga, R. G. Xiong and T. Nakamura, Molecule-displacive ferroelectricity in organic supra-molecular solids, Sci. Rep. 3, 2249 (2013).

    [3] C. R. Bowen, J. Taylor, E. LeBoulbar, D. Zabek, A. Chauhan and R. Vaish, Pyroelectric materials and devices for energy harvesting applications, Energy Environ. Sci. 7, 3836 (2014).

    [4] H. Anetai, K. Sambe, T. Takeda, N. Hoshino and T. Akutagawa, Nanoscale effects in one-dimensional columnar supramolecular ferroelectrics, Chem.-A Eur. J. 25, 11233 (2019).

    [5] K. Gao, M. Gu, X. Qiu, X. N. Ying, H. Y. Ye, Y. Zhang, J. Sun, X. Meng, F. M. Zhang, D. Wu, H. L. Cai and X. S. Wu, Above-room-temperature molecular ferroelectric and fast switch-able dielectric of diisopropylammonium perchlorate, J. Mater. Chem. C 2, 9957 (2014).

    [6] J. F. Scott, Applications of modern ferroelectrics, Science 315, 954 (2007).

    [7] H. Zhu, C. Fu and M. Mitsuishi, Organic ferroelectric field-effect transistor memories with poly(vinylidene fluoride) gate insulators and conjugated semiconductor channels: A review, Poly. Int. 70, 404 (2021).

    [8] D. W. Fu, W. Zhang, H. L. Cai, J. Z. Ge, Y. Zhang and R. G. Xiong, Diisopropylammonium chloride: A ferroelectric organic salt with a high phase transition temperature and practical utilization level of spontaneous polarization, Adv. Mater. 23, 5658 (2011).

    [9] S. V. Baryshnikov, E. V. Charnaya, A. Y. Milinskiy, V. A. Parfenov and I. V. Egorova, Impact of nanoconfinement on the diisopro-pylammonium chloride (C6H16ClN) organic ferroelectric, Phase Trans. 91, 293 (2018).

    [10] N. I. Uskova, E. V. Charnaya, D. Yu. Podorozhkin, S. V. Barysh-nikov, I. V. Egorova and A. Y. Milinskiy, Structural evolution of diisopropylammonium chloride (DIPAC) molecular ferroelectric, Phys. Solid State 62, 1195 (2020).

    [11] S. Pongiappan and S. Karuppannan, Crystal structure, hirshfeld surface analysis and phase transformation behavior of diiso-propylammonium chloride hemihydrate crystals, J. Phys. Chem. Solids 153, 110008 (2021).

    [12] D. W. Fu, H. L. Cai, Y. Liu, Q. Ye, W. Zhang, Y. Zhang, X. Y. Chen, G. Giovannetti, M. Capone, J. Li and R. G. Xiong, Diiso-propylammonium bromide is a high-temperature molecular ferro-electric crystal, Science 339, 425 (2013).

    [13] A. Piecha, A. Gagor, R. Jakubas and P. Szklarz, Room-tempera-ture ferroelectricity in diisopropylammonium bromide, Cryst. Eng. Commun. 15, 940 (2013).

    [14] G. Kociok-Kohn, B. Lungwitz and A. C. Filippou, Diisopro-pylammonium bromide, Acta Cryst. C 52, 2309 (1996).

    [15] K. Gao, C. Liu, Z. Cui, J. Zhu, H. L. Cai and X. S. Wu, Room-temperature growth of ferroelectric diisopropylammonium bromide with 12-crown-4 addition, Cryst. Eng. Commun. 17, 2429 (2015).

    [16] S. V. Baryshnikov, A. Y. Milinskii, E. V. Charnaya and I. V. Egor-ova, Size effect in nanocomposites based on molecular ferroelectric diisopropylammonium bromide, Phys. Solid State 61, 134 (2019).

    [17] S. Sahoo, T. R. Ravindran, V. Srihari, K. K. Pandey, S. Chandra, C. Thirmal and P. Murugavel, Pressure induced phase transforma-tions in diisopropylammonium bromide, J. Solid State Chem. 274, 182 (2019).

    [18] R. K. Saripalli, D. Swain, S. Prasad, H. Nhalil, H. L. Bhat, T. N. G. Row and S. Elizabeth, Observation of ferroelectric phase and large spontaneous electric polarization in organic salt of diisopropyl-ammonium iodide, J. Appl. Phys. 121, 114101 (2017).

    [19] E. Kabir et al., Complex impedance studies of organic ferro-electric- Diisopropylammonium Iodide (DIPAI), AIP Conf. Pro. 2142, 040006 (2019).

    [20] A. Y. Milinskiy, S. V. Baryshnikov, I. V. Egorova and H. T. Nguyen, Dielectric properties of ferroelectric diisopropyl-ammonium iodide, Phase Trans. 92, 406 (2019).

    [21] A. Piecha-Bisiorek, A. Gagor, D. Isakov, P. Zielinski, M. Galazka and R. Jakubas, Phase sequence in diisopropylammonium iodide: Avoided ferroelectricity by the appearance of a reconstructed phase, Inorg. Chem. Front. 4, 553 (2017).

    [22] D. K. Pradhan, R. N. P. Choudhary and B. K. Samantaray, Studies of dielectric relaxation and AC conductivity behavior of plasti-cized polymer nanocomposite electrolytes, Int. J. Electrochem. Sci. 3, 597 (2008).

    [23] A. Erog.lu, A. Tatarog.lu and S. Alt.ndal, On the temperature dependent dielectric properties, conductivity and resistivity of MIS structures at 1 MHz, Microelectron. Eng. 91, 154 (2012).

    [24] M. M. Abdel Kader, M. Y. Elzayat, T. R. Hammad, A. I. Aboud and H. Abdelmonem, Dielectric permittivity, ac conductivity and phase transition in hydroxyl ammonium sulphate, Phys. Scr. 83, 035705 (2011).

    [25] A. Chelkowski, Dielectric Physics (Elsevier North-Holland, Amsterdam, 1980).

    [26] M. Popescu and I. Bunget, Physics of Solid Dielectrics (Elsevier, Amsterdam, New York, 1984).

    [27] A. Tatarog.lu, Frequency and voltage dependence of the electri-cal and dielectric properties of Au/n-Si Schottky diodes with SiO2 insulator layer, J. Optoelectron. Adv. Mater. 13, 940 (2011).

    [28] D. Kobor, O. Bodian, W. Bodian and A. K. Diallo, Structural and impedance characterization of ceramics prepared from NPK fertil-izer, Process. Appl. Ceram. 9, 107 (2015).

    [29] J. Tellier, Ph. Boullay, D. B. Jennet and D. Mercuri, Structure versus relaxor properties in Aurivillius type compounds, J. Eur. Ceram. Soc. 27, 3687 (2007).

    [30] V. Purohit, R. N. P. Choudhary and A. Sahoo, Investigation of structure, microstructure, impedance, dielectric and transport properties of sodium tungstate titanate: Na(W1/2Ti1/2)O3, Mater. Res. Exp. 6, 125710 (2019).

    [31] S. Maity, D. Bhattacharya and S. K. Ray, Structural and impedance spectroscopy of pseudo-co-ablated (SrBi2Ta2O9)-(1.x)–(La0.67Sr0.33MnO3) x composites, J. Phys. D: Appl. Phys. 44, 095403 (2011).

    [32] Mubasher and M. Mumtaz, Nanocomposites of multi-walled carbon nanotubes/cobalt ferrite Nanoparticles: Synthesis, struc-tural, dielectric and impedance spectroscopy, J. Alloys Compd. 866, 158750 (2021).

    [33] N. Singh, A. Agarwal and S. Sanghi, Dielectric relaxation, conductivity behavior and magnetic properties of Mg substituted Zn–Li ferrites, Current Appl. Phys. 11, 783 (2011).

    [34] E. B. Araújo and J. A. Eiras, Synthesis and characterization of thin films of Bi4Ti3O12 from oxide precursors, J. Phys. D: Appl. Phys. 32, 957 (1999).

    [35] A. Tripathy, S. N. Das, S. K. Pradhan, S. Bhuyan and R. N. P. Choudhary, Temperature and frequency dependent dielectric and impedance characteristics of double perovskite Bi2MnCoO6 elec-tronic material, J. Mater. Sci. Mater. Electron. 29, 4770 (2018).

    [36] A. K. Dubey, P. Singh, S. Singh, D. Kumar and O. Parkash, Charge compensation, electrical and dielectric behavior of lantha-num doped CaCu3Ti4O12, J. Alloys Compd. 509, 3899 (2011).

    [37] L. Kungumadevi, R. Sathyamoorthy and A. Subbarayan, AC con-ductivity and dielectric properties of thermally evaporated PbTe thin films, Solid-State Electron. 54, 58 (2010).

    [38] A. Rouahi, A. Kahouli, F. Challali et al., Impedance and electric modulus study of amorphous TiTaO thin films: Highlight of the interphase effect, J. Phys. D: Appl. Phys. 46, 065308 (2013).

    [39] E. V. Hauff, Impedance spectroscopy for emerging photovoltaics, J. Phys. Chem. C 123, 11329 (2019).

    [40] J. R. Macdonald, Impedance Spectroscopy (Wiley, New York, 1987).

    [41] R. J. Sengwa, S. Choudhary and S. Sankhla, Low frequency dielectric relaxation processes and ionic conductivity of mont-morillonite clay nanoparticles colloidal suspension in poly(vinyl pyrrolidone)-ethylene glycol blends, eXPRESS Polym. Lett. 2, 800 (2008).

    [42] M. Bourguiba, Z. Raddaoui, A. Dhahri, M. Chafra, J. Dhahri and M. A. Garcia, Investigation of the conduction mechanism, high dielec-tric constant, and non-Debye-type relaxor in La0.67Ba0.25Ca0.08MnO3 manganite, J. Mater Sci. Mater. Electron 31, 11810 (2020).

    [43] G. Ioannou, A. Patsidis and G. C. Psarras, Dielectric and func-tional properties of polymer matrix/ZnO/BaTiO3 hybrid compos-ites, Compos. A. Appl. Sci. Manuf. 42, 104 (2011).

    [44] R. Font, J. Portelles and N. Suárez-Almodovar, Frequency-temperature response of ferroelectromagnetic Pb(Fe1∕2Nb1∕2)O3 ceramics obtained by different precursors. III. Dielectric relaxation near the transition temperature, J. Appl. Phys. 97, 1 (2005).

    [45] N.Kumar, S. K. Patri, R. N. P. Choudhary et al., Frequency-temperature response of a new multiferroic, Process Appl. Ceram. 8, 121 (2014).

    [46] K. Prabakar, S. K. Narayandass and D. Mangalaraj, Dielectric properties of Cd0.6Zn0.4Te thin films, Phys. Stat. Sol. 199, 507 (2003).

    [47] M. A. Elkestawy, S. Abdel kader and M. A. Amer, AC conduc-tivity and dielectric properties of Ti-doped CoCr1. 2Fe0. 8O4 spinel ferrite, Physica B 405, 619 (2010).

    [48] A. M. Farid, H. E. Atyia and N. A. Hegab, AC conductivity and dielectric properties of Sb2Te3 thin films, Vacuum 80, 284 (2005).

    [49] A. A. M. Farag, A. M. Mansour, A. H. Ammar, M. Abdel Rafea and A. M. Farid, Electrical conductivity, dielectric properties and optical absorption of organic based nanocrystalline sodium copper chlorophyllin for photodiode application, J. Alloys Compd. 513, 404 (2012).

    [50] R. Amin, K. Samantaray, E. G. Rini, I. Bhaumik and S. Sen, Grain and grain boundary contributions to AC conductivity in ferroelectric Ba0.75Pb0.25Ti1–xZrxO3 ceramics, Ceram. Int. 47, 13118 (2021).

    [51] S. Hajra, M. Sahu, V. Purohit and R. N. P. Choudhary, Dielectric, con-ductivity and ferroelectric properties of lead-free electronic ceramic: 0.6Bi(Fe0.98Ga0.02)O3–0.4BaTiO3, Heliyon 5, e01654 (2019).

    [52] K. Funke, Jump relaxation in solid electrolytes, Prog. Solid State Chem. 22, 111 (1993).

    [53] D. P. Almond, G. K. Duncan, A. R. West, Mobile ion concentra-tions in solid electrolytes from an analysis of ac conductivity, Solid State Ion. 9, 277 (1983).

    [54] G. E. Pike, AC conductivity of scandium oxide and a new hopping model for conductivity, Phys. Rev. B 6, 1572 (1972).

    [55] E. Kabir, M. Khatun, R. J. Mustafa, K. Singh and M. Rahman, AC electrical conductivity and dielectric properties of doping induced molecular ferroelectric diisopropylammonium bromide, Mater. Res. Exp. 6, 096306 (2019).

    [56] K. C. B. Naidu, V. N. Reddy, T. S. Sarmash, D. Kothandan, T. Subbarao and N. S. Kumar , Structural, morphological, electrical, impedance and ferroelectric properties of BaO-ZnO-TiO2 ternary system, J. Aust. Ceram. Soc. 55, 201 (2019).

    [57] A. P. Barranco, Dielectric relaxation and electrical conductivity in ferroelectric ceramic/polymer composite based on modified lead titanate, J. Appl. Phys. 102, 114102 (2007).

    [58] A. E. Bachiri, M. E. Hasnaoui, A. Louardi, A. Narjis and F. Bennani, Structural and dielectric studies for the conduction mechanism analyses of lithium-niobate oxide ferroelectric ceram-ics, Physica B. Cond. Matt. 571, 181 (2019).

    [in Chinese], [in Chinese]. Dielectric, impedance, modulus spectroscopy and AC conductivity studies on novel organic ferroelectric diisopropylammonium chloride (dipaCl)[J]. Journal of Advanced Dielectrics, 2021, 11(4): 2150015
    Download Citation