[1] R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photon. 2(4), 219–225 (2008).
[2] G. D. Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A: Pure Appl. Opt. 11(1), 013001 (2009).
[3] S. Nolte et al., “Cutting of optical materials by using femtosecond laser pulses,” Proc. SPIE 4440, 152–160 (2001).
[4] M. Sun et al., “Numerical analysis of laser ablation and damage in glass with multiple picosecond laser pulses,” Opt. Express 21(7), 7858–7867 (2013).
[5] H. Varel et al., “Micromachining of quartz with ultrashort laser pulses,” Appl. Phys. A 65(4–5), 367–373 (1997).
[6] S. Darvishi, T. Cubaud, and J. P. Longtin, “Ultrafast laser machining of tapered microchannels in glass and PDMS,” Opt. Laser Eng. 50(2), 210–214 (2012).
[7] S. Doering et al., “In situ imaging of hole shape evolution in ultrashort pulse laser drilling,” Opt. Express 18(19), 20395–20400 (2010).
[8] S. Doering et al., “Evolution of hole depth and shape in ultrashort pulse deep drilling in silicon,” Appl. Phys. A 105(1), 69–74 (2011).
[9] A. Vogel et al., “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[10] Ch. Ziener et al., “Specular reflectivity of plasma mirrors as a function of intensity, pulse duration, and angle of incidence,” J. Appl. Phys. 93(1), 768–770 (2003).
[11] G. Doumy et al., “Complete characterization of a plasma mirror for the production of high-contrast ultraintense laser pulses,” Phys. Rev. E 69(2), 026402 (2004).
[12] A. Q. Wu, I. H. Chowdhury, and X. Xu, “Femtosecond laser absorption in fused silica: numerical and experimental investigation,” Phys. Rev. B 72(8), 085128 (2005).
[13] L. Jiang and H.-L. Tsai, “A plasma model combined with an improved two-temperature equation for ultrafast laser ablation of dielectrics,” J. Appl. Phys. 104(9), 093101 (2008).
[14] T. E. Itina and N. Shcheblanov, “Electronic excitation in femtosecond laser interactions with wide-band-gap materials,” Appl. Phys. A 98(4), 769–775 (2010).
[15] M. Born and E.Wolf, Principle of Optics, Cambridge University Press, Cambridge (1999).
[16] N. N. Nedialkov and P. A. Atanasov, “Molecular dynamics simulation study of deep hole drilling in iron by ultrashort laser pulses,” Appl. Surf. Sci. 252(13), 4411–4415 (2006).
[17] M. D. Feit, A. M. Komashko, and A. M. Rubenchik, “Ultra-short pulse laser interaction with transparent dielectrics,” Appl. Phys. A 79(7), 1657–1661 (2004).
[18] F.Williams, S. P. Varma, and S. Hillenius, “Liquid water as a lone-pair amorphous semiconductor,” J. Chem. Phys. 64(4), 1549–1554 (1976).
[19] L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Soviet Phys. JETP 20(5), 1307–1304 (1965).
[20] F. Docchio, “Lifetimes of plasmas induced in liquids and ocular media by single Nd:YAG laser pulses of different duration,” Europhys. Lett. 6(5), 407–412 (1988).
[21] D. Puerto et al., “Dynamics of plasma formation, relaxation, and topography modification induced by femtosecond laser pulses in crystalline and amorphous dielectrics,” J. Opt. Soc. Am. B 27(5), 1065–1076 (2010).
[22] S. Hoehm et al., “Femtosecond laser-induced periodic surface structures on silica,” J. Appl. Phys. 112(1), 014901 (2012).
[23] I. Miyamoto, K. Cvecek, and M. Schmidt, “Crack-free conditions in welding of glass by ultrashort laser pulse,” Opt. Express 21(12), 14291–14302 (2013).