• Frontiers of Optoelectronics
  • Vol. 9, Issue 3, 466 (2016)
Kaiwei LI, Ting ZHANG, Nan ZHANG, Mengying ZHANG, Jing ZHANG, Tingting WU, Shaoyang MA, Junying WU, Ming CHEN, Yi HE, and Lei WEI*
Author Affiliations
  • School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
  • show less
    DOI: 10.1007/s12200-016-0558-7 Cite this Article
    Kaiwei LI, Ting ZHANG, Nan ZHANG, Mengying ZHANG, Jing ZHANG, Tingting WU, Shaoyang MA, Junying WU, Ming CHEN, Yi HE, Lei WEI. Integrated liquid crystal photonic bandgap fiber devices[J]. Frontiers of Optoelectronics, 2016, 9(3): 466 Copy Citation Text show less
    References

    [1] Knight J C, Birks T A, Russell P S J, Atkin D M. All-silica singlemode optical fiber with photonic crystal cladding. Optics Letters, 1996, 21(19): 1547–1549

    [2] Bjarklev A, Broeng J, Bjarklev A S. Photonic Crystal Fibres. Boston, MA: Kluwer Academic Publishers, 2003

    [3] Russell P S J. Photonic crystal fibers. science, 2003, 299(5605): 358–362

    [4] Bise R T, Windeler R S, Kranz K S, Kerbage C, Eggleton B J, Trevor D J. Tunable photonic band gap fiber. In: Proceedings of Optical Fiber Communication Conference and Exhibit, 2002. Anaheim: IEEE, 2002, 466–468

    [5] Larsen T, Bjarklev A, Hermann D, Broeng J. Optical devices based on liquid crystal photonic bandgap fibres. Optics Express, 2003, 11 (20): 2589–2596

    [6] Agrawal G P. Fiber-Optic Communication Systems. New York: John Wiley & Sons, 2012

    [7] Green M, Madden S J. Low loss nematic liquid crystal cored fiber waveguides. Applied Optics, 1989, 28(24): 5202–5203

    [8] Lorenz A, Schuhmann R, Kitzerow H S. Infiltrated photonic crystal fiber: experiments and liquid crystal scattering model. Optics Express, 2010, 18(4): 3519–3530

    [9] Du F, Lu Y Q, Wu S T. Electrically tunable liquid-crystal photonic crystal fiber. Applied Physics Letters, 2004, 85(12): 2181–2183

    [10] Haakestad M W, Alkeskjold T T, Nielsen M D, Scolari L, Riishede J, Engan H E, Bjarklev A. Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber. IEEE Photonics Technology Letters, 2005, 17(4): 819–821

    [11] Scolari L, Alkeskjold T, Riishede J, Bjarklev A, Hermann D, Anawati A, Nielsen M, Bassi P. Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers. Optics Express, 2005, 13(19): 7483–7496

    [12] Wei L, Eskildsen L, Weirich J, Scolari L, Alkeskjold T T, Bjarklev A. Continuously tunable all-in-fiber devices based on thermal and electrical control of negative dielectric anisotropy liquid crystal photonic bandgap fibers. Applied Optics, 2009, 48(3): 497–503

    [13] Cognard J. Alignment of Nematic Liquid Crystals and Their Mixtures-Molecular Crystals and Liquid Crystals Supplement Series. London, New York: Gordon and Breach Science Publishers, 1982

    [14] Anawati A. Alignment in cylindrical geometry and dielectric properties. Dissertation for the Master Degree. Sweden: Chalmers University of Tecnhology, 2005

    [15] Lorenz A, Kitzerow H S, Schwuchow A, Kobelke J, Bartelt H. Photonic crystal fiber with a dual-frequency addressable liquid crystal: behavior in the visible wavelength range. Optics Express, 2008, 16(23): 19375–19381

    [16] Litchinitser N, Dunn S, Steinvurzel P, Eggleton B, White T, McPhedran R, de Sterke C. Application of an ARROW model for designing tunable photonic devices. Optics Express, 2004, 12(8): 1540–1550

    [17] L gsgaard J. Gap formation and guided modes in photonic bandgap fibres with high-index rods. Journal of Optics A, Pure and Applied Optics, 2004, 6(8): 798–804

    [18] Ren G, Shum P, Hu J, Yu X, Gong Y. Polarization-dependent bandgap splitting and mode guiding in liquid crystal photonic bandgap fibers. Journal of Lightwave Technology, 2008, 26(22): 3650–3659

    [19] Hu J J, Ren G, Shum P, Yu X,Wang G, Lu C. Analytical method for band structure calculation of photonic crystal fibers filled with liquid crystal. Optics Express, 2008, 16(9): 6668–6674

    [20] Weirich J, Laegsgaard J, Wei L, Alkeskjold T T, Wu T X, Wu S T, Bjarklev A. Liquid crystal parameter analysis for tunable photonic bandgap fiber devices. Optics Express, 2010, 18(5): 4074–4087

    [21] Duguay M, Kokubun Y, Koch T L, Pfeiffer L. Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures. Applied Physics Letters, 1986, 49(1): 13–15

    [22] Litchinitser N M, Abeeluck A K, Headley C, Eggleton B J. Antiresonant reflecting photonic crystal optical waveguides. Optics Letters, 2002, 27(18): 1592–1594

    [23] Litchinitser N M, Dunn S C, Usner B, Eggleton B J, White T P, McPhedran R C, de Sterke C M. Resonances in microstructured optical waveguides. Optics Express, 2003, 11(10): 1243–1251

    [24] Litchinitser N, Poliakov E. Antiresonant guiding microstructured optical fibers for sensing applications. Applied Physics. B, Lasers and Optics, 2005, 81(2–3): 347–351

    [25] Alkeskjold T T. Optical devices based on liquid crystal photonic bandgap fibers. Dissertation for the Doctoral Degree. DKongens Lyngby: Technical University of Denmark, 2005

    [26] Noordegraaf D, Scolari L, Laegsgaard J, Tanggaard Alkeskjold T, Tartarini G, Borelli E, Bassi P, Li J, Wu S T. Avoided-crossingbased liquid-crystal photonic-bandgap notch filter. Optics Letters, 2008, 33(9): 986–988

    [27] Hu C, Whinnery J R. Losses of a nematic liquid-crystal optical waveguide. JOSA, 1974, 64(11): 1424–1432

    [28] Ferrarini D, Vincetti L, Zoboli M, Cucinotta A, Selleri S. Leakage properties of photonic crystal fibers. Optics Express, 2002, 10(23): 1314–1319

    [29] Alkeskjold T T, Bjarklev A. Electrically controlled broadband liquid crystal photonic bandgap fiber polarimeter. Optics Letters, 2007, 32 (12): 1707–1709

    [30] Wei L, Alkeskjold T T, Bjarklev A. Compact design of an electrically tunable and rotatable polarizer based on a liquid crystal photonic bandgap fiber. IEEE Photonics Technology Letters, 2009, 21(21): 1633–1635

    [31] Vengsarkar A M, Lemaire P J, Judkins J B, Bhatia V, Erdogan T, Sipe J E. Long-period fiber gratings as band-rejection filters. Journal of Lightwave Technology, 1996, 14(1): 58–65

    [32] Vengsarkar A M, Pedrazzani J R, Judkins J B, Lemaire P J, Bergano N S, Davidson C R. Long-period fiber-grating-based gain equalizers. Optics Letters, 1996, 21(5): 336–338

    [33] Poole C D, Wiesenfeld J M, Digiovanni D J, Vengsarkar A M. Optical fiber-based dispersion compensation using higher order modes near cutoff. Journal of Lightwave Technology, 1994, 12(10): 1746–1758

    [34] Bhatia V, Vengsarkar A M. Optical fiber long-period grating sensors. Optics Letters, 1996, 21(9): 692–694

    [35] Rindorf L, Jensen J B, Dufva M, Pedersen L H, H iby P E, Bang O. Photonic crystal fiber long-period gratings for biochemical sensing. Optics Express, 2006, 14(18): 8224–8231

    [36] Kakarantzas G, Birks T A, Russell P S J. Structural long-period gratings in photonic crystal fibers. Optics Letters, 2002, 27(12): 1013–1015

    [37] Morishita K, Miyake Y. Fabrication and resonance wavelengths of long-period gratings written in a pure-silica photonic crystal fiber by the glass structure change. Journal of Lightwave Technology, 2004, 22(2): 625–630

    [38] Lim J H, Lee K S, Kim J C, Lee B H. Tunable fiber gratings fabricated in photonic crystal fiber by use of mechanical pressure. Optics Letters, 2004, 29(4): 331–333

    [39] Brambilla G, Fotiadi A A, Slattery S A, Nikogosyan D N. Twophoton photochemical long-period grating fabrication in pure-fusedsilica photonic crystal fiber. Optics Letters, 2006, 31(18): 2675– 2677

    [40] Yeom D I, Steinvurzel P, Eggleton B J, Lim S D, Kim B Y. Tunable acoustic gratings in solid-core photonic bandgap fiber. Optics Express, 2007, 15(6): 3513–3518

    [41] Noordegraaf D, Scolari L, L gsgaard J, Rindorf L, Alkeskjold T T. Electrically and mechanically induced long period gratings in liquid crystal photonic bandgap fibers. Optics Express, 2007, 15(13): 7901–7912

    [42] de Gennes P G. The Physics of Liquid Crystals. New York: Oxford University Press, 1993

    [43] Ulrich R. Polarization stabilization on single-mode fiber. Applied Physics Letters, 1979, 35(11): 840–842

    [44] Imai T, Nosu K, Yamaguchi H. Optical polarisation control utilising an optical heterodyne detection scheme. Electronics Letters, 1985, 21(2): 52–53

    [45] Heismann F. Integrated-optic polarization transformer for reset-free endless polarization control. IEEE Journal of Quantum Electronics, 1989, 25(8): 1898–1906

    [46] Rumbaugh S H, JonesMD, Casperson LW. Polarization control for coherent fiber-optic systems using nematic liquid crystals. Journal of Lightwave Technology, 1990, 8(3): 459–465

    [47] Kerbage C, Eggleton B. Numerical analysis and experimental design of tunable birefringence in microstructured optical fiber. Optics Express, 2002, 10(5): 246–255

    [48] Knape H, Margulis W. All-fiber polarization switch. Optics Letters, 2007, 32(6): 614–616

    [49] Azzam R M. Poincaré sphere representation of the fixed-polarizer rotating-retarder optical system. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 2000, 17(11): 2105– 2107

    [50] Chiba T, Ohtera Y, Kawakami S. Polarization stabilizer using liquid crystal rotatable waveplates. Journal of Lightwave Technology, 1999, 17(5): 885–890

    [51] Starodubov D, Grubsky V, Feinberg J. All-fiber bandpass filter with adjustable transmission using cladding-mode coupling. IEEE Photonics Technology Letters, 1998, 10(11): 1590–1592

    [52] Yeom D I, Kim H S, Kang M S, Park H S, Kim B Y. Narrowbandwidth all-fiber acoustooptic tunable filter with low polarizationsensitivity. IEEE Photonics Technology Letters, 2005, 17(12): 2646–2648

    [53] Steinvurzel P, Eggleton B, de Sterke C M, Steel M. Continuously tunable bandpass filtering using high-index inclusion microstructured optical fibre. Electronics Letters, 2005, 41(8): 463–464

    [54] Liu BW, HuML, Fang X H, Li Y F, Chai L, Li J Y, Chen W,Wang C Y. Tunable bandpass filter with solid-core photonic bandgap fiber and Bragg fiber. IEEE Photonics Technology Letters, 2008, 20(8): 581–583

    [55] Seeds J, Williams K J. Microwave photonics. Journal of Lightwave Technology, 2006, 24(12): 4628–4641

    [56] Yao J. Microwave photonics. Journal of Lightwave Technology, 2009, 27(3): 314–335

    [57] hman F, Yvind K, M rk J. Slow light in a semiconductor waveguide for true-time delay applications in microwave photonics. IEEE Photonics Technology Letters, 2007, 19(15): 1145–1147

    [58] Okawachi Y, Bigelow M S, Sharping J E, Zhu Z, Schweinsberg A, Gauthier D J, Boyd R W, Gaeta A L. Tunable all-optical delays via Brillouin slow light in an optical fiber. Physical Review Letters, 2005, 94(15): 153902

    [59] Edge C, Molony A, Bennion I. Fibre grating time delay element for phased array antennas. Electronics Letters, 1995, 31(17): 1485– 1486

    [60] Italia V, Pisco M, Campopiano S, Cusano A, Cutolo A. Chirped fiber Bragg gratings for electrically tunable time delay lines. IEEE Journal of Selected Topics in Quantum Electronics, 2005, 11(2): 408–416

    [61] Baba T. Slow light in photonic crystals. Nature Photonics, 2008, 2 (8): 465–473

    [62] Vlasov Y A, O’Boyle M, Hamann H F, McNab S J. Active control of slow light on a chip with photonic crystal waveguides. Nature, 2005, 438(7064): 65–69

    [63] Ebnali-Heidari M, Grillet C, Monat C, Eggleton B J. Dispersion engineering of slow light photonic crystal waveguides using microfluidic infiltration. Optics Express, 2009, 17(3): 1628–1635

    [64] Liu Z, Zheng X, Zhang H, Guo Y, Zhou B. X-band continuously variable true-time delay lines using air-guiding photonic bandgap fibers and a broadband light source. Optics Letters, 2006, 31(18): 2789–2791

    [65] Pureur V, Bigot L, Bouwmans G, Quiquempois Y, Douay M, Jaouen Y. Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm. Applied Physics Letters, 2008, 92 (6): 061113

    [66] Shirakawa A, Maruyama H, Ueda K, Olausson C B, Lyngs J K, Broeng J. High-power Yb-doped photonic bandgap fiber amplifier at 1150–1200 nm. Optics Express, 2009, 17(2): 447–454

    [67] Noordegraaf D, Nielsen M D, Skovgaard P M, Agger S, Hansen K P, Broeng J, Jakobsen C, Simonsen H R, Laegsgaard J. Pump combiner for air-clad fiber with PM single-mode signal feedthrough. In: Proceedings of Conference on Lasers and Electro- Optics/ International Quantum Electronics Conference, CLEO2009. Baltimore: Optical Society of America, 2009, 523–524

    [68] Wei L, Khomtchenko E, Alkeskjold T T, Bjarklev A. Photolitho- graphy of thick photoresist coating for electrically controlled liquid crystal photonic bandgap fibre devices. Electronics Letters, 2009, 45 (6): 326–327

    [69] Wei L,Weirich J, Alkeskjold T T, Bjarklev A. On-chip tunable longperiod grating devices based on liquid crystal photonic bandgap fibers. Optics Letters, 2009, 34(24): 3818–3820

    [70] Wei L, Alkeskjold T T, Bjarklev A. Tunable and rotatable polarization controller using photonic crystal fiber filled with liquid crystal. Applied Physics Letters, 2010, 96(24): 241104

    [71] Wei L, Alkeskjold T T, Bjarklev A. Electrically tunable bandpass filter using solid-core photonic crystal fibers filled with multiple liquid crystals. Optics Letters, 2010, 35(10): 1608–1610

    [72] Wei L, Xue W, Chen Y, Alkeskjold T T, Bjarklev A. Optically fed microwave true-time delay based on a compact liquid-crystal photonic-bandgap-fiber device. Optics Letters, 2009, 34(18): 2757– 2759

    [73] Olausson C B, Scolari L, Wei L, Noordegraaf D, Weirich J, Alkeskjold T T, Hansen K P, Bjarklev A. Electrically tunable Ybdoped fiber laser based on a liquid crystal photonic bandgap fiber device. Optics Express, 2010, 18(8): 8229–8238

    [74] Stolyarov A M, Wei L, Shapira O, Sorin F, Chua S L, Joannopoulos J D, Fink Y. Microfluidic directional emission control of an azimuthally polarized radial fibre laser. Nature Photonics, 2012, 6 (4): 229–233

    [75] Stolyarov A M, Wei L, Sorin F, Lestoquoy G, Joannopoulos J D, Fink Y. Fabrication and characterization of fibers with built-in liquid crystal channels and electrodes for transverse incident-light modulation. Applied Physics Letters, 2012, 101(1): 011108

    Kaiwei LI, Ting ZHANG, Nan ZHANG, Mengying ZHANG, Jing ZHANG, Tingting WU, Shaoyang MA, Junying WU, Ming CHEN, Yi HE, Lei WEI. Integrated liquid crystal photonic bandgap fiber devices[J]. Frontiers of Optoelectronics, 2016, 9(3): 466
    Download Citation