• Frontiers of Optoelectronics
  • Vol. 4, Issue 1, 65 (2011)
Minghui DENG1, Shuqing HUANG1, Zhexun YU1, Dongmei LI1, Yanhong LUO1, Yubai BAI2, and Qingbo MENG1、*
Author Affiliations
  • 1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
  • 2College of Chemistry, Jilin University, Changchun 130023, China
  • show less
    DOI: 10.1007/s12200-011-0204-3 Cite this Article
    Minghui DENG, Shuqing HUANG, Zhexun YU, Dongmei LI, Yanhong LUO, Yubai BAI, Qingbo MENG. Enhanced electron injection/transportation by surface states increment in mesoporous TiO2 dye-sensitized solar cells[J]. Frontiers of Optoelectronics, 2011, 4(1): 65 Copy Citation Text show less
    References

    [1] O’Regan B, Gr tzel M. A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353(6346): 737-740

    [2] K nenkamp R, Henninger R, Hoyer P. Photocarrier transport in colloidal TiO2 films. Journal of Physical Chemistry, 1993, 97(28): 7328-7330

    [3] Schlichth rl G, Huang S Y, Sprague J, Frank A J. Band edge movement and recombination kinetics in dye-sensitized nanocrystalline TiO2 solar cells: A study by intensity modulated photovoltage spectroscopy. Journal of Physical Chemistry B, 1997, 101(41): 8141-8155

    [4] Tennakone K, Kumara G R R A, Kottegoda I R M, Perera V P S. An efficient dye-sensitized photoelectrochemical solar cell made from oxides of tin and zinc. Chemical Communications, 1999, (1): 15-16

    [5] Kambili A,Walker A B, Qiu F L, Fisher A C, Savin A D, Peter LM. Electron transport in the dye sensitized nanocrystalline cell. Physics E, Low-Dimensional Systems and Nanostructures, 2002, 14(1-2): 203-209

    [6] Meng Q B, Takahashi K, Zhang X T, Sutanto I, Rao T N, Sato O, Fujishima A, Watanabe H, Nakamori T, Uragami M. Fabrication of an efficient solid-state dye-sensitized solar cell. Langmuir, 2003, 19(9): 3572-3574

    [7] Shen Q, Toyoda T. Studies of optical absorption and electron transport in nanocrystalline TiO2 electrodes. Thin Solid Films, 2003, 438-439: 167-170

    [8] Bisquert J, Vikhrenko V S. Interpretation of the time constants measured by kinetic techniques in nanostructured semiconductor electrodes and dye-sensitized solar cells. Journal of Physical Chemistry B, 2004, 108(7): 2313-2322

    [9] Boschloo G, Hagfeldt A. Activation energy of electron transport in dye-sensitized TiO2 solar cells. Journal of Physical Chemistry B, 2005, 109(24): 12093-12098

    [10] Rühle S, Dittrich T. Investigation of the electric field in TiO2/FTO junctions used in dye-sensitized solar cells by photocurrent transients. Journal of Physical Chemistry B, 2005, 109(19): 9522-9526

    [11] Siegers C, Olàh B, Würfel U, Hohl-Ebinger J, Hinsch A, Haag R. Donor-acceptor-functionalized polymers for efficient light harvesting in the dye solar cell. Solar Energy Materials and Solar Cells, 2009, 93(5): 552-563

    [12] Ferrere S, Gregg B A. Large increases in photocurrents and solar conversion efficiencies by UV illumination of dye sensitized solar cells. Journal of Physical Chemistry B, 2001, 105(32): 7602-7605

    [13] Gregg B A, Chen S G, Ferrere S. Enhanced dye-sensitized photoconversion efficiency via reversible production of UV-induced surface states in mesoporous TiO2. Journal of Physical Chemistry B, 2003, 107(13): 3019-3029

    [14] Wang Q, Zhang Z, Zakeeruddin S M, Gr tzel M. Enhancement of the performance of dye-sensitized solar cell by formation of shallow transport levels under visible light illumination. Journal of Physical Chemistry C, 2008, 112(17): 7084-7092

    [15] Wang Z S, Li F Y, Huang C H. Photocurrent enhancement of hemicyanine dyes containing RSO3- group through treating TiO2 films with hydrochloric acid. Journal of Physical Chemistry B, 2001, 105(38): 9210-9217

    [16] Wang Z S, Yamaguchi T, Sugihara H, Arakawa H. Significant efficiency improvement of the black dye-sensitized solar cell through protonation of TiO2 films. Langmuir, 2005, 21(10): 4272-4276

    [17] Park DW, Park K H, Lee JW, Hwang K J, Choi Y K. Hydrochloric acid treatment of TiO2 electrode for quasi-solid-state dye-sensitized solar cells. Journal of Nanoscience and Nanotechnology, 2007, 7(11): 3722-3726

    [18] Jung H S, Lee J K, Lee S, Hong K S, Shin H. Acid adsorption on TiO2 nanoparticles - An electrochemical properties study. Journal of Physical Chemistry C, 2008, 112(22): 8476-8480

    [19] Kay A, Gr tzel M. Dye-sensitized core-shell nanocrystals: Improved efficiency of mesoporous tin oxide electrodes coated with a thin layer of an insulating oxide. Chemistry of Materials, 2002, 14(7): 2930-2935

    [20] Palomares E, Clifford J N, Haque S A, Lutz T, Durrant J R. Control of charge recombination dynamics in dye sensitized solar cells by the use of conformally deposited metal oxide blocking layers. Journal of the American Chemical Society, 2003, 125(2): 475-482

    [21] Liu X Z, Huang Z, Li K X, Li H, Li D M, Chen L Q, Meng Q B. Recombination reduction in dye-sensitized solar cells by screenprinted TiO2 underlayers. Chinese Physics Letters, 2006, 23(9): 2606-2608 (in Chinese)

    [22] Lee S, Kim J Y, Youn S H, Park M, Hong K S, Jung H S, Lee J K, Shin H. Preparation of a nanoporous CaCO3-coated TiO2 electrode and its application to a dye-sensitized solar cell. Langmuir, 2007, 23(23): 11907-11910

    [23] Zaban A, Aruna S T, Tirosh S, Gregg B A, Mastai Y. The effect of the preparation condition of TiO2 colloids on their surface structures. Journal of Physical Chemistry B, 2000, 104(17): 4130-4133

    [24] Zhang D, Downing J A, Knorr F J, McHale J L. Room-temperature preparation of nanocrystalline TiO2 films and the influence of surface properties on dye-sensitized solar energy conversion. Journal of Physical Chemistry B, 2006, 110(43): 21890-21898

    [25] Longo C, Nogueira A F, De Paoli M A, Cachet H. Solid-state and flexible dye-sensitized TiO2 solar cells: a study by electrochemical impedance spectroscopy. Journal of Physical Chemistry B, 2002, 106(23): 5925-5930

    [26] Han L, Koide N, Chiba Y, Mitate T. Modeling of an equivalent circuit for dye-sensitized solar cells. Applied Physics Letters, 2004, 84(13): 2433-2435

    [27] Wang Q, Ito S, Gr tzel M, Santiago F F, Seró I M, Bisquert J, Bessho T. Imai Hachiro. Characteristics of high efficiency dyesensitized solar cells. Journal of Physical Chemistry B, 2006, 110(50): 25210-25221

    [28] Nelson J. Continuous-time random-walk model of electron transport in nanocrystalline TiO2 electrodes. Physical Review B: Condensed Matter and Materials Physics, 1999, 59(23): 15374-15380

    [29] Bisquert J, Cahen D, Hodes G, Rühle S, Zaban A. Physical chemical principles of photovoltaic conversion with nanoparticulate, mesoporous dye-sensitized solar cells. Journal of Physical Chemistry B, 2004, 108(24): 8106-8118

    Minghui DENG, Shuqing HUANG, Zhexun YU, Dongmei LI, Yanhong LUO, Yubai BAI, Qingbo MENG. Enhanced electron injection/transportation by surface states increment in mesoporous TiO2 dye-sensitized solar cells[J]. Frontiers of Optoelectronics, 2011, 4(1): 65
    Download Citation