• Chinese Journal of Lasers
  • Vol. 50, Issue 17, 1714005 (2023)
Kang Wang1、3, Yifei Fang1, Xi Cheng2, Zeyu Zhang2, Liwei Song1, Juan Du2, Ye Tian1, and Yuxin Leng1、2、*
Author Affiliations
  • 1State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2School of Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, Zhejiang, China
  • 3College of Optical Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
  • show less
    DOI: 10.3788/CJL230891 Cite this Article Set citation alerts
    Kang Wang, Yifei Fang, Xi Cheng, Zeyu Zhang, Liwei Song, Juan Du, Ye Tian, Yuxin Leng. Research Progress on Ultrafast Intense Laser Based High‑Field Terahertz Generation and Application on Non‑Equilibrium State Materials[J]. Chinese Journal of Lasers, 2023, 50(17): 1714005 Copy Citation Text show less
    References

    [1] Kleine-Ostmann T, Nagatsuma T. A review on terahertz communications research[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 32, 143-171(2011).

    [2] Pickwell E, Wallace V P. Biomedical applications of terahertz technology[J]. Journal of Physics D: Applied Physics, 39, R301-R310(2006).

    [3] Siegel P H. Terahertz technology in biology and medicine[J]. IEEE Transactions on Microwave Theory and Techniques, 52, 2438-2447(2004).

    [4] Pawar A Y, Sonawane D D, Erande K B et al. Terahertz technology and its applications[J]. Drug Invention Today, 5, 157-163(2013).

    [5] Jepsen P U, Cooke D G, Koch M. Terahertz spectroscopy and imaging-modern techniques and applications[J]. Laser & Photonics Reviews, 5, 124-166(2011).

    [6] Mittleman D M. Perspective: terahertz science and technology[J]. Journal of Applied Physics, 122, 230901(2017).

    [7] Tonouchi M. Cutting-edge terahertz technology[J]. Nature Photonics, 1, 97-105(2007).

    [8] Sirtori C. Bridge for the terahertz gap[J]. Nature, 417, 132-133(2002).

    [9] Auston D H, Cheung K P, Smith P R. Picosecond photoconducting hertzian dipoles[J]. Applied Physics Letters, 45, 284-286(1984).

    [10] Smith P R, Auston D H, Nuss M C. Subpicosecond photoconducting dipole antennas[J]. IEEE Journal of Quantum Electronics, 24, 255-260(1988).

    [11] Auston D H, Cheung K P, Valdmanis J A et al. Cherenkov radiation from femtosecond optical pulses in electro-optic media[J]. Physical Review Letters, 53, 1555-1558(1984).

    [12] Hamster H, Sullivan A, Gordon S et al. Subpicosecond, electromagnetic pulses from intense laser-plasma interaction[J]. Physical Review Letters, 71, 2725-2728(1993).

    [13] Jin Q, Williams K, Yiwen E et al. Observation of broadband terahertz wave generation from liquid water[J]. Applied Physics Letters, 111, 071103(2017).

    [14] Gopal A, Herzer S, Schmidt A et al. Observation of gigawatt-class THz pulses from a compact laser-driven particle accelerator[J]. Physical Review Letters, 111, 074802(2013).

    [15] Sell A, Leitenstorfer A, Huber R. Phase-locked generation and field-resolved detection of widely tunable terahertz pulses with amplitudes exceeding 100 MV/cm[J]. Optics Letters, 33, 2767-2769(2008).

    [16] Darrow J T, Hu B B, Zhang X C et al. Subpicosecond electromagnetic pulses from large-aperture photoconducting antennas[J]. Optics Letters, 15, 323-325(1990).

    [17] You D, Dykaar D R, Jones R R et al. Generation of high-power sub-single-cycle 500-fs electromagnetic pulses[J]. Optics Letters, 18, 290-292(1993).

    [18] Ropagnol X, Blanchard F, Ozaki T et al. Intense terahertz generation at low frequencies using an interdigitated ZnSe large aperture photoconductive antenna[J]. Applied Physics Letters, 103, 161108(2013).

    [19] Ropagnol X, Khorasaninejad M, Raeiszadeh M et al. Intense THz Pulses with large ponderomotive potential generated from large aperture photoconductive antennas[J]. Optics Express, 24, 11299-11311(2016).

    [20] Gao Y H, Yang C E, Chang Y et al. Terahertz-radiation-enhanced broadband terahertz generation from large aperture photoconductive antenna[J]. Applied Physics B, 109, 133-136(2012).

    [21] Blanchard F, Razzari L, Bandulet H C et al. Generation of 1.5 µJ single-cycle terahertz pulses by optical rectification from a large aperture ZnTe crystal[J]. Optics Express, 15, 13212-13220(2007).

    [22] Yang K H, Richards P L, Shen Y R. Generation of far-infrared radiation by picosecond light pulses in LiNbO3[J]. Applied Physics Letters, 19, 320-323(1971).

    [23] Aoki K, Savolainen J, Havenith M. Broadband terahertz pulse generation by optical rectification in GaP crystals[J]. Applied Physics Letters, 110, 201103(2017).

    [24] Sinko A, Ozheredov I, Rudneva E et al. Perspective on terahertz applications of molecular crystals[J]. Electronics, 11, 2731(2022).

    [25] Yang Z, Jazbinsek M, Ruiz B et al. Molecular engineering of stilbazolium derivatives for second-order nonlinear optics[J]. Chemistry of Materials, 19, 3512-3518(2007).

    [26] Mutter L, Brunner F D, Yang Z et al. Linear and nonlinear optical properties of the organic crystal DSTMS[J]. Journal of the Optical Society of America B, 24, 2556-2561(2007).

    [27] Hebling J, Almasi G, Kozma I et al. Velocity matching by pulse front tilting for large area THz-pulse generation[J]. Optics Express, 10, 1161-1166(2002).

    [28] Stepanov A G, Kuhl J, Kozma I Z et al. Scaling up the energy of THz pulses created by optical rectification[J]. Optics Express, 13, 5762-5768(2005).

    [29] Yeh K L, Hoffmann M C, Hebling J et al. Generation of 10 μJ ultrashort terahertz pulses by optical rectification[J]. Applied Physics Letters, 90, 1121-1123(2007).

    [30] Stepanov A G, Bonacina L, Chekalin S V et al. Generation of 30 μJ single-cycle terahertz pulses at 100 Hz repetition rate by optical rectification[J]. Optics Letters, 33, 2497-2499(2008).

    [31] Stepanov A G, Hebling J, Kuhl J. Efficient generation of subpicosecond terahertz radiation by phase-matched optical rectification using ultrashort laser pulses with tilted pulse fronts[J]. Applied Physics Letters, 83, 3000-3002(2003).

    [32] Hebling J, Stepanov A G, Almási G et al. Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts[J]. Applied Physics B, 78, 593-599(2004).

    [33] Hirori H, Doi A, Blanchard F et al. Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3[J]. Applied Physics Letters, 98, 091106(2011).

    [34] Pálfalvi L, Hebling J, Kuhl J et al. Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range[J]. Journal of Applied Physics, 97, 123505(2005).

    [35] Fülöp J A, Pálfalvi L, Almási G et al. Design of high-energy terahertz sources based on optical rectification: erratum[J]. Optics Express, 19, 22950(2011).

    [36] Huang S W, Granados E, Huang W R et al. High conversion efficiency, high energy terahertz pulses by optical rectification in cryogenically cooled lithium niobate[J]. Optics Letters, 38, 796-798(2013).

    [37] Fülöp J A, Ollmann Z, Lombosi C et al. Efficient generation of THz pulses with 0.4 mJ energy[J]. Optics Express, 22, 20155-20163(2014).

    [38] Wu X J, Kong D Y, Hao S B et al. Generation of 13.9-mJ terahertz radiation from lithium niobate materials[J]. Advanced Materials, 35, e2208947(2023).

    [39] Jang D, Kang C, Lee S K et al. Scalable terahertz generation by large-area optical rectification at 80 TW laser power[J]. Optics Letters, 44, 5634-5637(2019).

    [40] Nazarov M M, Shcheglov P A, Teplyakov V V et al. Broadband terahertz generation by optical rectification of ultrashort multiterawatt laser pulses near the beam breakup threshold[J]. Optics Letters, 46, 5866-5869(2021).

    [41] Guiramand L, Nkeck J E, Ropagnol X et al. Near-optimal intense and powerful terahertz source by optical rectification in lithium niobate crystal[J]. Photonics Research, 10, 340-346(2022).

    [42] Chen Z, Zhou X B, Werley C A et al. Generation of high power tunable multicycle teraherz pulses[J]. Applied Physics Letters, 99, 071102(2011).

    [43] Jolly S W, Matlis N H, Ahr F et al. Spectral phase control of interfering chirped pulses for high-energy narrowband terahertz generation[J]. Nature Communications, 10, 2591(2019).

    [44] Jang D, Sung J H, Lee S K et al. Generation of 0.7 mJ multicycle 15 THz radiation by phase-matched optical rectification in lithium niobate[J]. Optics Letters, 45, 3617-3620(2020).

    [45] Vicario C, Ruchert C, Hauri C P. High field broadband THz generation in organic materials[J]. Journal of Modern Optics, 62, 1480-1485(2015).

    [46] Ruchert C, Vicario C, Hauri C P. Scaling submillimeter single-cycle transients toward megavolts per centimeter field strength via optical rectification in the organic crystal OH1[J]. Optics Letters, 37, 899-901(2012).

    [47] Ruchert C, Vicario C, Hauri C P. Spatiotemporal focusing dynamics of intense supercontinuum THz pulses[J]. Physical Review Letters, 110, 123902(2013).

    [48] Vicario C, Monoszlai B, Hauri C P. GV/m single-cycle terahertz fields from a laser-driven large-size partitioned organic crystal[J]. Physical Review Letters, 112, 213901(2014).

    [49] Vicario C, Ovchinnikov A V, Ashitkov S I et al. Generation of 0.9-mJ THz pulses in DSTMS pumped by a Cr∶Mg2SiO4 laser[J]. Optics Letters, 39, 6632-6635(2014).

    [50] Vicario C, Jazbinsek M, Ovchinnikov A V et al. High efficiency THz generation in DSTMS, DAST and OH1 pumped by Cr∶forsterite laser[J]. Optics Express, 23, 4573-4580(2015).

    [51] Chefonov O V, Ovchinnikov A V, Agranat M B et al. Terahertz beam spot size measurements by a CCD camera[J]. Optics Letters, 44, 4099-4102(2019).

    [52] Shalaby M, Hauri C P. Demonstration of a low-frequency three-dimensional terahertz bullet with extreme brightness[J]. Nature Communications, 6, 5976(2015).

    [53] Takemoto Y, Takeya K, Kawayama I et al. Temperature dependence of terahertz wave generation from DAST crystal illuminated by 1.56 μm fiber laser[J]. Terahertz Science and Technology, 4, 42-45(2011).

    [54] Vicario C, Monoszlai B, Lombosi C et al. Pump pulse width and temperature effects in lithium niobate for efficient THz generation[J]. Optics Letters, 38, 5373-5376(2013).

    [55] Stepanov A G, Ruchert C, Levallois J et al. Generation of broadband THz pulses in organic crystal OH1 at room temperature and 10 K[J]. Optical Materials Express, 4, 870-875(2014).

    [56] Wang T H, Cao L F, Zhong D G et al. Growth, electrical and optical studies, and terahertz wave generation of organic NLO crystals: DSTMS[J]. CrystEngComm, 21, 2754-2761(2019).

    [57] Wang T H, Xu K, Wang G J et al. Growth, THz properties, and Hirshfeld surface studies of 4-N, N-dimethylamino-4- N-methyl-stilbazolium 2, 4, 6-trimethylbenzenesulfonate single crystal[J]. Journal of Materials Science: Materials in Electronics, 33, 4704-4711(2022).

    [58] Li Y, Wu Z A, Zhang X Y et al. Crystal growth and terahertz wave generation of organic NLO crystals: OH1[J]. Journal of Crystal Growth, 402, 53-59(2014).

    [59] Junginger F, Sell A, Schubert O et al. Single-cycle multiterahertz transients with peak fields above 10 MV/cm[J]. Optics Letters, 35, 2645-2647(2010).

    [60] Bai Y, Cheng C J, Li X L et al. Intense broadband mid-infrared pulses of 280  MV/cm for supercontinuum generation in gaseous medium[J]. Optics Letters, 43, 667-670(2018).

    [61] Taniuchi T, Okada S, Nakanishi H. Widely tunable terahertz-wave generation in an organic crystal and its spectroscopic application[J]. Journal of Applied Physics, 95, 5984-5988(2004).

    [62] Liu P X, Xu D G, Li Y et al. Widely tunable and monochromatic terahertz difference frequency generation with organic crystal DSTMS[J]. EPL (Europhysics Letters), 106, 60001-60006(2014).

    [63] Liu P X, Zhang X Y, Yan C et al. Widely tunable and monochromatic terahertz difference frequency generation with organic crystal 2-(3-(4-hydroxystyryl)-5, 5-dime-thylcyclohex-2-enylidene) malononitrile[J]. Applied Physics Letters, 108, 011104(2016).

    [64] Liu B, Bromberger H, Cartella A et al. Generation of narrowband, high-intensity, carrier-envelope phase-stable pulses tunable between 4 and 18 THz[J]. Optics Letters, 42, 129-131(2016).

    [65] Cook D J, Hochstrasser R M. Intense terahertz pulses by four-wave rectification in air[J]. Optics Letters, 25, 1210-1212(2000).

    [66] Bartel T, Gaal P, Reimann K et al. Generation of single-cycle THz transients with high electric-field amplitudes[J]. Optics Letters, 30, 2805-2807(2005).

    [67] Chen Y Q, Yamaguchi M, Wang M F et al. Terahertz pulse generation from noble gases[J]. Applied Physics Letters, 91, 251116(2007).

    [68] Rodriguez G, Dakovski G L. Scaling behavior of ultrafast two-color terahertz generation in plasma gas targets: energy and pressure dependence[J]. Optics Express, 18, 15130-15143(2010).

    [69] Zhao H, Zhang L L, Huang S X et al. Terahertz wave generation from noble gas plasmas induced by a wavelength-tunable femtosecond laser[J]. IEEE Transactions on Terahertz Science and Technology, 8, 299-304(2018).

    [70] Oh T I, Yoo Y J, You Y S et al. Generation of strong terahertz fields exceeding 8 MV/cm at 1 kHz and real-time beam profiling[J]. Applied Physics Letters, 105, 041103(2014).

    [71] Kuk D, Yoo Y J, Rosenthal E W et al. Generation of scalable terahertz radiation from cylindrically focused two-color laser pulses in air[J]. Applied Physics Letters, 108, 121106(2016).

    [72] Clerici M, Peccianti M, Schmidt B E et al. Wavelength scaling of terahertz generation by gas ionization[J]. Physical Review Letters, 110, 253901(2013).

    [73] Fedorov V Y, Tzortzakis S. Optimal wavelength for two-color filamentation-induced terahertz sources[J]. Optics Express, 26, 31150-31159(2018).

    [74] Wang W M, Kawata S, Sheng Z M et al. Efficient terahertz emission by mid-infrared laser pulses from gas targets[J]. Optics Letters, 36, 2608-2610(2011).

    [75] Koulouklidis A D, Gollner C, Shumakova V et al. Observation of extremely efficient terahertz generation from mid-infrared two-color laser filaments[J]. Nature Communications, 11, 292(2020).

    [76] Hale G M, Querry M R. Optical constants of water in the 200-nm to 200-μm wavelength region[J]. Applied Optics, 12, 555-563(1973).

    [77] Zhang L L, Wang W M, Wu T et al. Strong terahertz radiation from a liquid-water line[J]. Physical Review Applied, 12, 014005(2019).

    [78] Feng S J, Dong L Q, Wu T et al. Terahertz wave emission from water lines[J]. Chinese Optics Letters, 18, 023202(2020).

    [79] Dey I, Jana K, Fedorov V Y et al. Highly efficient broadband terahertz generation from ultrashort laser filamentation in liquids[J]. Nature Communications, 8, 1184(2017).

    [80] Balakin A V, Coutaz J L, Makarov V A et al. Terahertz wave generation from liquid nitrogen[J]. Photonics Research, 7, 678-686(2019).

    [81] Cao Y Q, E Y W, Huang P J et al. Broadband terahertz wave emission from liquid metal[J]. Applied Physics Letters, 117, 041107(2020).

    [82] Gopal A, Singh P, Herzer S et al. Characterization of 700 μJ T rays generated during high-power laser solid interaction[J]. Optics Letters, 38, 4705-4707(2013).

    [83] Liao G Q, Li Y T. Review of intense terahertz radiation from relativistic laser-produced plasmas[J]. IEEE Transactions on Plasma Science, 47, 3002-3008(2019).

    [84] Zeng Y S, Zhou C L, Song L W et al. Guiding and emission of milijoule single-cycle THz pulse from laser-driven wire-like targets[J]. Optics Express, 28, 15258-15267(2020).

    [85] Tian Y, Liu J S, Bai Y F et al. Femtosecond-laser-driven wire-guided helical undulator for intense terahertz radiation[J]. Nature Photonics, 11, 242-246(2017).

    [86] Kampfrath T, Tanaka K, Nelson K A. Resonant and nonresonant control over matter and light by intense terahertz transients[J]. Nature Photonics, 7, 680-690(2013).

    [87] Nicoletti D, Cavalleri A. Nonlinear light–matter interaction at terahertz frequencies[J]. Advances in Optics and Photonics, 8, 401-464(2016).

    [88] Ovchinnikov A V, Chefonov O V, Agranat M B et al. Optical second harmonic generation induced by picosecond terahertz pulses in centrosymmetric antiferromagnet NiO[J]. JETP Letters, 104, 441-448(2016).

    [89] Ovchinnikov A V, Chefonov O V, Mishina E D et al. Second harmonic generation in the bulk of silicon induced by an electric field of a high power terahertz pulse[J]. Scientific Reports, 9, 9753(2019).

    [90] Cornet M, Degert J, Abraham E et al. Terahertz-field-induced second harmonic generation through Pockels effect in zinc telluride crystal[J]. Optics Letters, 39, 5921-5924(2014).

    [91] Schubert O, Hohenleutner M, Langer F et al. Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations[J]. Nature Photonics, 8, 119-123(2014).

    [92] Zalden P, Song L W, Wu X J et al. Molecular polarizability anisotropy of liquid water revealed by terahertz-induced transient orientation[J]. Nature Communications, 9, 2142(2018).

    [93] Zhao H, Tan Y, Zhang L L et al. Ultrafast hydrogen bond dynamics of liquid water revealed by terahertz-induced transient birefringence[J]. Light: Science & Applications, 9, 136(2020).

    [94] Bodrov S, Sergeev Y, Murzanev A et al. Terahertz induced optical birefringence in polar and nonpolar liquids[J]. The Journal of Chemical Physics, 147, 084507(2017).

    [95] Hoffmann M C, Brandt N C, Hwang H Y et al. Terahertz Kerr effect[J]. Applied Physics Letters, 95, 231105(2009).

    [96] Sajadi M, Wolf M, Kampfrath T. Transient birefringence of liquids induced by terahertz electric-field torque on permanent molecular dipoles[J]. Nature Communications, 8, 14963(2017).

    [97] Cornet M, Degert J, Abraham E et al. Terahertz Kerr effect in gallium phosphide crystal[J]. Journal of the Optical Society of America B, 31, 1648-1652(2014).

    [98] Sajadi M, Wolf M, Kampfrath T. Terahertz-field-induced optical birefringence in common window and substrate materials[J]. Optics Express, 23, 28985-28992(2015).

    [99] Shen Y, Watanabe T, Arena D A et al. Nonlinear cross-phase modulation with intense single-cycle terahertz pulses[J]. Physical Review Letters, 99, 043901(2007).

    [100] Vicario C, Shalaby M, Hauri C P. Subcycle extreme nonlinearities in GaP induced by an ultrastrong terahertz field[J]. Physical Review Letters, 118, 083901(2017).

    [101] Liu M K, Hwang H Y, Tao H et al. Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial[J]. Nature, 487, 345-348(2012).

    [102] Li X, Qiu T, Zhang J H et al. Terahertz field-induced ferroelectricity in quantum paraelectric SrTiO3[J]. Science, 364, 1079-1082(2019).

    [103] Kampfrath T, Sell A, Klatt G et al. Coherent terahertz control of antiferromagnetic spin waves[J]. Nature Photonics, 5, 31-34(2011).

    [104] Baierl S, Mentink J H, Hohenleutner M et al. Terahertz-driven nonlinear spin response of antiferromagnetic nickel oxide[J]. Physical Review Letters, 117, 197201(2016).

    [105] Balos V, Bierhance G, Wolf M et al. Terahertz-magnetic-field induced ultrafast faraday rotation of molecular liquids[J]. Physical Review Letters, 124, 093201(2020).

    [106] Jnawali G, Rao Y, Yan H G et al. Observation of a transient decrease in terahertz conductivity of single-layer graphene induced by ultrafast optical excitation[J]. Nano Letters, 13, 524-530(2013).

    [107] Iida R, Satoh T, Shimura T et al. Spectral dependence of photoinduced spin precession in DyFeO3[J]. Physical Review B, 84, 064402(2011).

    [108] Zhou R Z, Jin Z M, Li G F et al. Terahertz magnetic field induced coherent spin precession in YFeO3[J]. Applied Physics Letters, 100, 061102(2012).

    [109] Li G F, Jin Z M, Xue X et al. Terahertz coherent control of surface plasmon polariton propagation in subwavelength metallic hole arrays[J]. Applied Physics Letters, 100, 191115(2012).

    [110] Zhang Z Y, Hu M C, Jia T Y et al. Suppressing the trapping process by interfacial charge extraction in antimony selenide heterojunctions[J]. ACS Energy Letters, 6, 1740-1748(2021).

    [111] Zou Y Q, Ma Q S, Zhang Z Y et al. Observation of ultrafast interfacial exciton formation and relaxation in graphene/MoS2 heterostructure[J]. The Journal of Physical Chemistry Letters, 13, 5123-5130(2022).

    [112] Quan C J, Xing X A, Jia T Y et al. Hot carrier transfer in PtSe2/graphene enabled by the hot phonon bottleneck[J]. The Journal of Physical Chemistry Letters, 13, 9456-9463(2022).

    [113] Xing X A, Zhang Z Y, Quan C J et al. Tunable ultrafast electron transfer in WSe2–graphene heterostructures enabled by atomic stacking order[J]. Nanoscale, 14, 7418-7425(2022).

    [114] Jin Z M, Peng Y, Fang Y Q et al. Photoinduced large polaron transport and dynamics in organic-inorganic hybrid lead halide perovskite with terahertz probes[J]. Light: Science & Applications, 11, 209(2022).

    [115] Ma Q, Krishna Kumar R, Xu S Y et al. Photocurrent as a multiphysics diagnostic of quantum materials[J]. Nature Reviews Physics, 5, 170-184(2023).

    [116] Zhang X C, Hu B B, Darrow J T et al. Generation of femtosecond electromagnetic pulses from semiconductor surfaces[J]. Applied Physics Letters, 56, 1011-1013(1990).

    [117] Braun L, Mussler G, Hruban A et al. Ultrafast photocurrents at the surface of the three-dimensional topological insulator Bi2Se3[J]. Nature Communications, 7, 13259(2016).

    [118] Fan Z Y, Xu M Z, Huang Y Y et al. Terahertz surface emission from MoSe2 at the monolayer limit[J]. ACS Applied Materials & Interfaces, 12, 48161-48169(2020).

    [119] Huang Y Y, Zhu L P, Zhao Q Y et al. Surface optical rectification from layered MoS2 crystal by THz time-domain surface emission spectroscopy[J]. ACS Applied Materials & Interfaces, 9, 4956-4965(2017).

    [120] Si K Y, Huang Y Y, Zhao Q Y et al. Terahertz surface emission from layered semiconductor WSe2[J]. Applied Surface Science, 448, 416-423(2018).

    [121] Song F C, Zu X Z, Zhang Z Y et al. Ultrafast drift current terahertz emission amplification in the monolayer WSe2/Si heterostructure[J]. The Journal of Physical Chemistry Letters, 13, 11398-11404(2022).

    [122] Suo P, Xia W, Zhang W J et al. Terahertz emission on the surface of a van der Waals magnet CrSiTe3[J]. Laser & Photonics Reviews, 14, 2000025(2020).

    [123] Tong M Y, Hu Y Z, He W B et al. Ultraefficient terahertz emission mediated by shift-current photovoltaic effect in layered gallium telluride[J]. ACS Nano, 15, 17565-17572(2021).

    [124] Guzelturk B, Belisle R A, Smith M D et al. Terahertz emission from hybrid perovskites driven by ultrafast charge separation and strong electron–phonon coupling[J]. Advanced Materials, 30, 1704737(2018).

    [125] Yue X Y, Wang C W, Zhang B et al. Real-time observation of the buildup of polaron in α-FAPbI3[J]. Nature Communications, 14, 917(2023).

    [126] Luo L, Cheng D, Song B Q et al. A light-induced phononic symmetry switch and giant dissipationless topological photocurrent in ZrTe5[J]. Nature Materials, 20, 329-334(2021).

    Kang Wang, Yifei Fang, Xi Cheng, Zeyu Zhang, Liwei Song, Juan Du, Ye Tian, Yuxin Leng. Research Progress on Ultrafast Intense Laser Based High‑Field Terahertz Generation and Application on Non‑Equilibrium State Materials[J]. Chinese Journal of Lasers, 2023, 50(17): 1714005
    Download Citation