• Chinese Journal of Lasers
  • Vol. 42, Issue 7, 702010 (2015)
Han Xiahui*, Xia Kegui, Li Guiyun, and Li Jianlang
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/cjl201542.0702010 Cite this Article Set citation alerts
    Han Xiahui, Xia Kegui, Li Guiyun, Li Jianlang. 3.2 ns High Peak Power Radially Polarized Pulsed Output from Passively Q-Switched Microchip Laser with Composite Structure of YAG/Nd∶YAG/Cr4+∶YAG Crystal[J]. Chinese Journal of Lasers, 2015, 42(7): 702010 Copy Citation Text show less
    References

    [1] Xia Kegui, Li Jianlang. Recent development in radially polarized solid-state laser with composite laser crystal[J]. Laser & Optoelectronics Progress, 2013, 50(8): 080015.

    [2] Li Zhengwei, Chen Meng, Li Gang. Side-pumped Nd∶YAG mode-locked radially polarized laser[J]. Chinese J lasers, 2014, 41(1): 0102006.

    [3] Qiwen Zhan. Cylindrical vector beams: from mathematical concepts to applications[J]. Adv Opt Photonics, 2009, 1(1): 1-57.

    [4] Qiwen Zhan, James R Leger. Focus shaping using cylindrical vector beams[J]. Opt Express, 2002, 10(7): 324-331.

    [5] Yuichi Kozawa, Terumasa Hibi, Aya Sat, et al.. Lateral resolution enhancement of laser scanning microscopy by a higher-order radially polarized mode beam[J]. Opt Express, 2011, 19(17): 15947-15954.

    [6] Youyi Zhuang, Yaoju Zhang, Biaofeng Ding, et al.. Trapping rayleigh particles using highly focused higher-order radially polarized beams[J]. Opt Commun, 2011, 284(7): 1734-1739.

    [7] Lin Dai, Jianxing Li, Weiping Zang, et al.. Vacuum electron acceleration driven by a tightly focused radially polarized Gaussian beam[J]. Opt Express, 2011, 19(10): 9303-9308.

    [8] V G Niziev, A V Nesterov. Influence of beam polarization on laser cutting efficiency[J]. J Phys D: Appl Phys, 1999, 32(13): 1455-1461.

    [9] Luo Wei, Cheng Shubo, Yuan Zhangzhong, et al.. Power-exponent-phase vortices for manipulating particles[J]. Acta Optica Sinica, 2014, 34(11): 1109001.

    [10] Jianlang Li, Kenichi Ueda, Mitsuru Musha, et al.. Radially polarized and pulsed output from passively Q-switched Nd∶YAG ceramic microchip laser[J]. Opt Lett, 2008, 33(22): 2686-2688.

    [11] Kegui Xia, Jianlang Li. Radially polarized and passively Q-switched Nd∶YAG laser with composite structure of gain medium[J]. Chin Opt Lett, 2011, 9(10): 101402.

    [12] Kenchia Chang, Donglin Li, Mingdar Wei. Self-sustaining azimuthal polarization in a passively Q-switched Nd∶GdVO4 laser with a Cr4+∶YAG saturable absorber[J]. JOSA B, 2014, 31(2): 382-386.

    [13] Zhiqiang Fang, Kegui Xia, Yao Yao, et al.. Radially polarized and passively Q-switched Nd∶YAG laser under annular-shaped pumping[J]. IEEE Journal of Selected Topics in Quantum Electron, 2015, 21(1): 1600406.

    [14] John J Degnan. Optimization of passively Q-switched lasers[J]. IEEE Journal of Quantum Eelectron, 1995, 31(11): 1890-1901.

    [15] H Eilers, K R Hoffman, W M Dennis, et al.. Saturation of 1.064 mm absorption in Cr,Ca∶Y3A15O12 crystals[J]. Appl Phys Lett, 1992, 61(25): 2958-2960.

    [16] H Sakai, A Sone, H Kan, et al.. Polarization stabilizing for diode-pumped passively Q-switched Nd∶YAG microchip lasers[C]. Advanced Solid-State Photonics, 2006: MD2.

    [17] Oliver Puncken, Henrik Tünnermann, James J Morehead, et al.. Intrinsic reduction of the depolarization in Nd∶YAG crystals[J]. Opt Express, 2010, 18 (19): 20461-20474.

    CLP Journals

    [1] Ren Junjie, Gao Xiaoqiang, Chen Meng. Kilohertz Sub-Nanosecond Radially Polarized Light[J]. Laser & Optoelectronics Progress, 2017, 54(11): 111403

    Han Xiahui, Xia Kegui, Li Guiyun, Li Jianlang. 3.2 ns High Peak Power Radially Polarized Pulsed Output from Passively Q-Switched Microchip Laser with Composite Structure of YAG/Nd∶YAG/Cr4+∶YAG Crystal[J]. Chinese Journal of Lasers, 2015, 42(7): 702010
    Download Citation