• Infrared Technology
  • Vol. 45, Issue 3, 282 (2023)
Dahai NING and Sheng ZHENG*
Author Affiliations
  • [in Chinese]
  • show less
    DOI: Cite this Article
    NING Dahai, ZHENG Sheng. An Object Detection Algorithm Based on Decision-Level Fusion of Visible and Infrared Images[J]. Infrared Technology, 2023, 45(3): 282 Copy Citation Text show less
    References

    [1] LIN C, LU J, WANG G, et al. Graininess-aware deep feature learning for robust pedestrian detection[J]. IEEE Transactions on Image Processing, 2020, 29: 3820-3834.

    [2] ZHANG X, YE P, LEUNG H, et al. Object fusion tracking based on visible and infrared images: a comprehensive review[J]. Information Fusion, 2020, 63: 166-187.

    [5] Schnelle S R, Chan A L. Enhanced target tracking through infrared-visible image fusion[C]//14th International Conference on Information Fusion, IEEE, 2011: 1-8.

    [8] Manpreet Kaur, Jasdeep Kaur, Jappreet Kaur. Survey of contrast enhancement techniques based on histogram equalization[J]. International Journal of Advanced Computer Science and Applications, 2011, 2(7): 137-141.

    [9] Stark J Alex. Adaptive image contrast enhancement using generalizations of histogram equalization[J]. IEEE Transactions on Image Processing, 2000, 9(5): 889-889.

    [12] Tomasi C, Manduchi R. Bilateral filtering for gray and color images[C]//6th International Conference on Computer Vision, IEEE, 1998: 839-846.

    [13] HE K, SUN J, TANG X. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 33(12): 2341-2353.

    [15] Paddle Paddle. Paddle Detection, Object detection and instance seg mentation toolkit based on PaddlePaddle[EB/OL]. [2022-08-01]. http s://github.com/PaddlePaddle/PaddleDetection.

    [16] XU S, WANG X, LV W, et al. PP-YOLOE: An evolved version of YOLO[J/OL]. arXiv preprint arXiv: 2203.16250, https://arxiv.org/ p-df/2203.16250.pdf.

    [17] ZHENG Z, WANG P, LIU W, et al. Distance-IoU loss: Faster and better learning for bounding box regression[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7): 12993-13000.

    [18] Hwang S, Park J, Kim N, et al. Multispectral pedestrian detection: Benchmark dataset and baseline[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 1037-1045.

    [19] LI C, SONG D, TONG R, et al. Illumination-aware faster R-CNN for robust multispectral pedestrian detection[J]. Pattern Recognition, 2019, 85: 161-171.

    [20] LI C, SONG D, TONG R, et al. Multispectral pedestrian detection via simultaneous detection and segmentation[J/OL]. arXiv preprint arXiv:1808.04818, https://arxiv.org/pdf/1808.04818.pdf.

    NING Dahai, ZHENG Sheng. An Object Detection Algorithm Based on Decision-Level Fusion of Visible and Infrared Images[J]. Infrared Technology, 2023, 45(3): 282
    Download Citation