[1] LIN C, LU J, WANG G, et al. Graininess-aware deep feature learning for robust pedestrian detection[J]. IEEE Transactions on Image Processing, 2020, 29: 3820-3834.
[2] ZHANG X, YE P, LEUNG H, et al. Object fusion tracking based on visible and infrared images: a comprehensive review[J]. Information Fusion, 2020, 63: 166-187.
[5] Schnelle S R, Chan A L. Enhanced target tracking through infrared-visible image fusion[C]//14th International Conference on Information Fusion, IEEE, 2011: 1-8.
[8] Manpreet Kaur, Jasdeep Kaur, Jappreet Kaur. Survey of contrast enhancement techniques based on histogram equalization[J]. International Journal of Advanced Computer Science and Applications, 2011, 2(7): 137-141.
[9] Stark J Alex. Adaptive image contrast enhancement using generalizations of histogram equalization[J]. IEEE Transactions on Image Processing, 2000, 9(5): 889-889.
[13] HE K, SUN J, TANG X. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 33(12): 2341-2353.
[15] Paddle Paddle. Paddle Detection, Object detection and instance seg mentation toolkit based on PaddlePaddle[EB/OL]. [2022-08-01]. http s://github.com/PaddlePaddle/PaddleDetection.
[16] XU S, WANG X, LV W, et al. PP-YOLOE: An evolved version of YOLO[J/OL]. arXiv preprint arXiv: 2203.16250, https://arxiv.org/ p-df/2203.16250.pdf.
[17] ZHENG Z, WANG P, LIU W, et al. Distance-IoU loss: Faster and better learning for bounding box regression[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7): 12993-13000.
[18] Hwang S, Park J, Kim N, et al. Multispectral pedestrian detection: Benchmark dataset and baseline[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 1037-1045.
[19] LI C, SONG D, TONG R, et al. Illumination-aware faster R-CNN for robust multispectral pedestrian detection[J]. Pattern Recognition, 2019, 85: 161-171.
[20] LI C, SONG D, TONG R, et al. Multispectral pedestrian detection via simultaneous detection and segmentation[J/OL]. arXiv preprint arXiv:1808.04818, https://arxiv.org/pdf/1808.04818.pdf.