• Chinese Journal of Lasers
  • Vol. 50, Issue 1, 0113007 (2023)
Qirui Liu1, Yuxiang Tang1, Ke Wei2、*, and Tian Jiang2、**
Author Affiliations
  • 1College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, Hunan, China
  • 2Institute for Quantum Science and Technology, College of Science, National University of Defense Technology, Changsha 410073, Hunan, China
  • show less
    DOI: 10.3788/CJL221091 Cite this Article Set citation alerts
    Qirui Liu, Yuxiang Tang, Ke Wei, Tian Jiang. Progress of Research on Two‐dimensional Antiferromagnets with Magneto‑optic Properties[J]. Chinese Journal of Lasers, 2023, 50(1): 0113007 Copy Citation Text show less
    References

    [1] Jedema F J, Filip A T, van Wees B J. Electrical spin injection and accumulation at room temperature in an all-metal mesoscopic spin valve[J]. Nature, 410, 345-348(2001).

    [2] Parkin S S P, Kaiser C, Panchula A et al. Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers[J]. Nature Materials, 3, 862-867(2004).

    [3] Chuang P, Ho S C, Smith L W et al. All-electric all-semiconductor spin field-effect transistors[J]. Nature Nanotechnology, 10, 35-39(2015).

    [4] Kim Y H, Zhai Y X, Lu H P et al. Chiral-induced spin selectivity enables a room-temperature spin light-emitting diode[J]. Science, 371, 1129-1133(2021).

    [5] Jungwirth T, Wunderlich J, Olejník K. Spin Hall effect devices[J]. Nature Materials, 11, 382-390(2012).

    [6] Huang Y, Zhou P, Yang Y G et al. Progress in research of dynamic properties and applications of spin-lasers[J]. High Power Laser and Particle Beams, 33, 111006(2021).

    [7] Han W, Kawakami R K, Gmitra M et al. Graphene spintronics[J]. Nature Nanotechnology, 9, 794-807(2014).

    [8] Tongay S, Varnoosfaderani S S, Appleton B R et al. Magnetic properties of MoS2: existence of ferromagnetism[J]. Applied Physics Letters, 101, 123105(2012).

    [9] Guguchia Z, Kerelsky A, Edelberg D et al. Magnetism in semiconducting molybdenum dichalcogenides[J]. Science Advances, 4, eaat3672(2018).

    [10] Gong C, Li L, Li Z L et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals[J]. Nature, 546, 265-269(2017).

    [11] Huang B, Clark G, Navarro-Moratalla E et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit[J]. Nature, 546, 270-273(2017).

    [12] Hellman F, Hoffmann A, Tserkovnyak Y et al. Interface-induced phenomena in magnetism[J]. Reviews of Modern Physics, 89, 025006(2017).

    [13] Lachance-Quirion D, Tabuchi Y, Gloppe A et al. Hybrid quantum systems based on magnonics[J]. Applied Physics Express, 12, 070101(2019).

    [14] Brataas A, van Wees B, Klein O et al. Spin insulatronics[J]. Physics Reports, 885, 1-27(2020).

    [15] Šmejkal L, Mokrousov Y, Yan B H et al. Topological antiferromagnetic spintronics[J]. Nature Physics, 14, 242-251(2018).

    [16] Baltz V, Manchon A, Tsoi M et al. Antiferromagnetic spintronics[J]. Reviews of Modern Physics, 90, 015005(2018).

    [17] Železný J, Wadley P, Olejník K et al. Spin transport and spin torque in antiferromagnetic devices[J]. Nature Physics, 14, 220-228(2018).

    [18] Maniv E, Murphy R A, Haley S C et al. Exchange bias due to coupling between coexisting antiferromagnetic and spin-glass orders[J]. Nature Physics, 17, 525-530(2021).

    [19] Savary L, Balents L. Quantum spin liquids: a review[J]. Reports on Progress in Physics, 80, 016502(2017).

    [20] Luo J, Zhang X W, Dai B. Spin seebeck effect of nickel oxide thin films prepared by reactive magnetron sputtering[J]. Journal of Synthetic Crystals, 50, 1668-1674(2021).

    [21] Zhang Q, Hwangbo K, Wang C et al. Observation of giant optical linear dichroism in a zigzag antiferromagnet FePS3[J]. Nano Letters, 21, 6938-6945(2021).

    [22] Kang S, Kim K, Kim B H et al. Coherent many-body exciton in van der Waals antiferromagnet NiPS3[J]. Nature, 583, 785-789(2020).

    [23] Lan T S, Ding B F, Liu B L. Magneto‐optic effect of two‐dimensional materials and related applications[J]. Nano Select, 1, 298-310(2020).

    [24] Chumak A V, Vasyuchka V I, Serga A A et al. Magnon spintronics[J]. Nature Physics, 11, 453-461(2015).

    [25] Němec P, Fiebig M, Kampfrath T et al. Antiferromagnetic opto-spintronics[J]. Nature Physics, 14, 229-241(2018).

    [26] Jungwirth T, Marti X, Wadley P et al. Antiferromagnetic spintronics[J]. Nature Nanotechnology, 11, 231-241(2016).

    [27] Gomonay E V, Loktev V M. Spintronics of antiferromagnetic systems (review article)[J]. Low Temperature Physics, 40, 17-35(2014).

    [28] Mak K F, Shan J, Ralph D C. Probing and controlling magnetic states in 2D layered magnetic materials[J]. Nature Reviews Physics, 1, 646-661(2019).

    [29] Kurebayashi H, Garcia J H, Khan S et al. Magnetism, symmetry and spin transport in van der Waals layered systems[J]. Nature Reviews Physics, 4, 150-166(2022).

    [30] Gibertini M, Koperski M, Morpurgo A F et al. Magnetic 2D materials and heterostructures[J]. Nature Nanotechnology, 14, 408-419(2019).

    [31] Rahman S, Torres J F, Khan A R et al. Recent developments in van der Waals antiferromagnetic 2D materials: synthesis, characterization, and device implementation[J]. ACS Nano, 15, 17175-17213(2021).

    [32] Wang X Z, Cao J, Lu Z G et al. Spin-induced linear polarization of photoluminescence in antiferromagnetic van der Waals crystals[J]. Nature Materials, 20, 964-970(2021).

    [33] Higo T, Man H Y, Gopman D B et al. Large magneto-optical Kerr effect and imaging of magnetic octupole domains in an antiferromagnetic metal[J]. Nature Photonics, 12, 73-78(2018).

    [34] Wu M X, Isshiki H, Chen T S et al. Magneto-optical Kerr effect in a non-collinear antiferromagnet Mn3Ge[J]. Applied Physics Letters, 116, 132408(2020).

    [35] Seyler K L, Zhong D, Klein D R et al. Ligand-field helical luminescence in a 2D ferromagnetic insulator[J]. Nature Physics, 14, 277-281(2018).

    [36] Molina-Sãnchez A, Catarina G, Sangalli D et al. Magneto-optical response of chromium trihalide monolayers: chemical trends[J]. Journal of Materials Chemistry C, 8, 8856-8863(2020).

    [37] McGuire M. Crystal and magnetic structures in layered, transition metal dihalides and trihalides[J]. Crystals, 7, 121(2017).

    [38] Kim S, Lee J, Lee C G et al. Polarized Raman spectra and complex Raman tensors of antiferromagnetic semiconductor CrPS4[J]. The Journal of Physical Chemistry C, 125, 2691-2698(2021).

    [39] Yan J Q, Zhang Q, Heitmann T et al. Crystal growth and magnetic structure of MnBi2Te4[J]. Physical Review Materials, 3, 064202(2019).

    [40] Wilson N P, Lee K, Cenker J et al. Interlayer electronic coupling on demand in a 2D magnetic semiconductor[J]. Nature Materials, 20, 1657-1662(2021).

    [41] Telford E J, Dismukes A H, Lee K et al. Layered antiferromagnetism induces large negative magnetoresistance in the van der Waals semiconductor CrSBr[J]. Advanced Materials, 32, 2003240(2020).

    [42] Du K Z, Wang X Z, Liu Y et al. Weak van der Waals stacking, wide-range band gap, and Raman study on ultrathin layers of metal phosphorus trichalcogenides[J]. ACS Nano, 10, 1738-1743(2016).

    [43] Gu M Q, Rondinelli J M. Nonlinear phononic control and emergent magnetism in Mott insulating titanates[J]. Physical Review B, 98, 024102(2018).

    [44] Klein D R, MacNeill D, Song Q et al. Enhancement of interlayer exchange in an ultrathin two-dimensional magnet[J]. Nature Physics, 15, 1255-1260(2019).

    [45] Guo K, Deng B W, Liu Z et al. Layer dependence of stacking order in nonencapsulated few-layer CrI3[J]. Science China Materials, 63, 413-420(2020).

    [46] Serri M, Cucinotta G, Poggini L et al. Enhancement of the magnetic coupling in exfoliated CrCl3 crystals observed by low-temperature magnetic force microscopy and X-ray magnetic circular dichroism[J]. Advanced Materials, 32, 2000566(2020).

    [47] McGuire M A, Clark G, Santosh K C et al. Magnetic behavior and spin-lattice coupling in cleavable van der Waals layered CrCl3 crystals[J]. Physical Review Materials, 1, 014001(2017).

    [48] Song T C, Sun Q C, Anderson E et al. Direct visualization of magnetic domains and moiré magnetism in twisted 2D magnets[J]. Science, 374, 1140-1144(2021).

    [49] Xu Y, Ray A, Shao Y T et al. Coexisting ferromagnetic-antiferromagnetic state in twisted bilayer CrI3[J]. Nature Nanotechnology, 17, 143-147(2022).

    [50] Akram M, LaBollita H, Dey D et al. Moiré skyrmions and chiral magnetic phases in twisted CrX3 (X = I, Br, and Cl) bilayers[J]. Nano Letters, 21, 6633-6639(2021).

    [51] Coak M J, Jarvis D M, Hamidov H et al. Tuning dimensionality in van-der-Waals antiferromagnetic Mott insulators TMPS3[J]. Journal of Physics: Condensed Matter, 32, 124003(2020).

    [52] Basnet R, Wegner A, Pandey K et al. Highly sensitive spin-flop transition in antiferromagnetic van der Waals material MPS3 (M=Ni and Mn)[J]. Physical Review Materials, 5, 064413(2021).

    [53] Yang K, Wang G Y, Liu L et al. Triaxial magnetic anisotropy in the two-dimensional ferromagnetic semiconductor CrSBr[J]. Physical Review B, 104, 144416(2021).

    [54] Gu P F, Sun Y J, Wang C et al. Magnetic phase transitions and magnetoelastic coupling in a two-dimensional stripy antiferromagnet[J]. Nano Letters, 22, 1233-1241(2022).

    [55] Zeng Y, Gu P F, Zhao Z J et al. 2D FeOCl: a highly in‐plane anisotropic antiferromagnetic semiconductor synthesized via temperature‐oscillation chemical vapor transport[J]. Advanced Materials, 34, 2108847(2022).

    [56] Kulish V V, Huang W. Single-layer metal halides MX2 (X = Cl, Br, I): stability and tunable magnetism from first principles and Monte Carlo simulations[J]. Journal of Materials Chemistry C, 5, 8734-8741(2017).

    [57] Kong T, Stolze K, Timmons E I et al. VI3-a new layered ferromagnetic semiconductor[J]. Advanced Materials, 31, 1808074(2019).

    [58] Tian S J, Zhang J F, Li C H et al. Ferromagnetic van der Waals crystal VI3[J]. Journal of the American Chemical Society, 141, 5326-5333(2019).

    [59] Kong T, Guo S, Ni D R et al. Crystal structure and magnetic properties of the layered van der Waals compound VBr3[J]. Physical Review Materials, 3, 084419(2019).

    [60] Zhao S, Wan W H, Ge Y F et al. Prediction of chalcogen‐doped VCl3 monolayers as 2D ferromagnetic semiconductors with enhanced optical absorption[J]. Annalen Der Physik, 533, 2100064(2021).

    [61] Pai Y Y, Marvinney C E, Feldman M A et al. Magnetostriction of α-RuCl3 flakes in the zigzag phase[J]. The Journal of Physical Chemistry C, 125, 25687-25694(2021).

    [62] Kim H S, Kee H Y. Crystal structure and magnetism in α-RuCl3: an ab initio study[J]. Physical Review B, 93, 155143(2016).

    [63] Sandilands L J, Sohn C H, Park H J et al. Optical probe of Heisenberg-Kitaev magnetism in α-RuCl3[J]. Physical Review B, 94, 195156(2016).

    [64] Tian Y Z, Gao W W, Henriksen E A et al. Optically driven magnetic phase transition of monolayer RuCl3[J]. Nano Letters, 19, 7673-7680(2019).

    [65] Li J H, Wang C, Zhang Z T et al. Magnetically controllable topological quantum phase transitions in the antiferromagnetic topological insulator MnBi2Te4[J]. Physical Review B, 100, 121103(2019).

    [66] Duong N P, Satoh T, Fiebig M. Ultrafast manipulation of antiferromagnetism of NiO[J]. Physical Review Letters, 93, 117402(2004).

    [67] Fiebig M, Duong N P, Satoh T et al. Ultrafast magnetization dynamics of antiferromagnetic compounds[J]. Journal of Physics D: Applied Physics, 41, 164005(2008).

    [68] Satoh T, Cho S J, Iida R et al. Spin oscillations in antiferromagnetic NiO triggered by circularly polarized light[J]. Physical Review Letters, 105, 077402(2010).

    [69] Afanasiev D, Hortensius J R, Ivanov B A et al. Ultrafast control of magnetic interactions via light-driven phonons[J]. Nature Materials, 20, 607-611(2021).

    [70] Schlauderer S, Lange C, Baierl S et al. Temporal and spectral fingerprints of ultrafast all-coherent spin switching[J]. Nature, 569, 383-387(2019).

    [71] Zhao H C, Xia H, Hu S et al. Large ultrafast-modulated Voigt effect in noncollinear antiferromagnet Mn3Sn[J]. Nature Communications, 12, 5266(2021).

    [72] Chen Q, Ding Q Y, Wang Y T et al. Electronic and magnetic properties of a two-dimensional transition metal phosphorous chalcogenide TMPS4[J]. The Journal of Physical Chemistry C, 124, 12075-12080(2020).

    [73] Kim K, Lim S Y, Lee J U et al. Suppression of magnetic ordering in XXZ-type antiferromagnetic monolayer NiPS3[J]. Nature Communications, 10, 345(2019).

    [74] Lançon D, Walker H C, Ressouche E et al. Magnetic structure and magnon dynamics of the quasi-two-dimensional antiferromagnet FePS3[J]. Physical Review B, 94, 214407(2016).

    [75] Sun Y J, Tan Q H, Liu X L et al. Probing the magnetic ordering of antiferromagnetic MnPS3 by Raman spectroscopy[J]. The Journal of Physical Chemistry Letters, 10, 3087-3093(2019).

    [76] Xiao H, Mi M J, Wang Y L. Recent development in two-dimensional magnetic materials and multi-field control of magnetism[J]. Acta Physica Sinica, 70, 127503(2021).

    [77] Feng W X, Hanke J P, Zhou X D et al. Topological magneto-optical effects and their quantization in noncoplanar antiferromagnets[J]. Nature Communications, 11, 118(2020).

    [78] Huang B, Cenker J, Zhang X O et al. Tuning inelastic light scattering via symmetry control in the two-dimensional magnet CrI3[J]. Nature Nanotechnology, 15, 212-216(2020).

    [79] Sun Y J, Pang S M, Zhang J. Review of Raman spectroscopy of two-dimensional magnetic van der Waals materials[J]. Chinese Physics B, 30, 117104(2021).

    [80] Chu H, Roh C J, Island J O et al. Linear magnetoelectric phase in ultrathin MnPS3 probed by optical second harmonic generation[J]. Physical Review Letters, 124, 027601(2020).

    [81] Belvin C A, Baldini E, Ozel I O et al. Exciton-driven antiferromagnetic metal in a correlated van der Waals insulator[J]. Nature Communications, 12, 4837(2021).

    [82] Matsuda T, Kanda N, Higo T et al. Room-temperature terahertz anomalous Hall effect in Weyl antiferromagnet Mn3Sn thin films[J]. Nature Communications, 11, 909(2020).

    [83] Mertins H C, Valencia S, Gaupp A et al. Magneto-optical polarization spectroscopy with soft X-rays[J]. Applied Physics A, 80, 1011-1020(2005).

    [84] Zhang W H, Qi Q Q, Zhou J et al. Mimicking faraday rotation to sort the orbital angular momentum of light[J]. Physical Review Letters, 112, 153601(2014).

    [85] Argyres P N. Theory of the faraday and kerr effects in ferromagnetics[J]. Physical Review, 97, 334-345(1955).

    [86] Siegrist F, Gessner J A, Ossiander M et al. Light-wave dynamic control of magnetism[J]. Nature, 571, 240-244(2019).

    [87] Xu J, Zhou C, Jia M W et al. Imaging antiferromagnetic domains in nickel oxide thin films by optical birefringence effect[J]. Physical Review B, 100, 134413(2019).

    [88] Zhang H Q, Ni Z L, Stevens C E et al. Cavity-enhanced linear dichroism in a van der Waals antiferromagnet[J]. Nature Photonics, 16, 311-317(2022).

    [89] Zhang T L, Wang Y M, Li H X et al. Magnetism and optical anisotropy in van der Waals antiferromagnetic insulator CrOCl[J]. ACS Nano, 13, 11353-11362(2019).

    [90] Lee K, Dismukes A H, Telford E J et al. Magnetic order and symmetry in the 2D semiconductor CrSBr[J]. Nano Letters, 21, 3511-3517(2021).

    [91] Zhang Y, Holder T, Ishizuka H et al. Switchable magnetic bulk photovoltaic effect in the two-dimensional magnet CrI3[J]. Nature Communications, 10, 3783(2019).

    [92] Long G, Zhang T, Cai X B et al. Isolation and characterization of few-layer manganese thiophosphite[J]. ACS Nano, 11, 11330-11336(2017).

    [93] Morimoto T, Nagaosa N. Shift current from electromagnon excitations in multiferroics[J]. Physical Review B, 100, 235138(2019).

    [94] Song T C, Anderson E, Tu M W Y et al. Spin photovoltaic effect in magnetic van der Waals heterostructures[J]. Science Advances, 7, eabg8094(2021).

    [95] Watanabe H, Yanase Y. Chiral photocurrent in parity-violating magnet and enhanced response in topological antiferromagnet[J]. Physical Review X, 11, 011001(2021).

    [96] Kumar R, Jenjeti R N, Austeria M P et al. Bulk and few-layer MnPS3: a new candidate for field effect transistors and UV photodetectors[J]. Journal of Materials Chemistry C, 7, 324-329(2019).

    [97] Xu T F, Luo M, Shen N M et al. Ternary 2D layered material FePSe3 and near-infrared photodetector[J]. Advanced Electronic Materials, 7, 2100207(2021).

    [98] Ni Z L, Zhang H Q, Hopper D A et al. Direct imaging of antiferromagnetic domains and anomalous layer-dependent mirror symmetry breaking in atomically thin MnPS3[J]. Physical Review Letters, 127, 187201(2021).

    [99] Sun Z Y, Yi Y F, Song T C et al. Giant nonreciprocal second-harmonic generation from antiferromagnetic bilayer CrI3[J]. Nature, 572, 497-501(2019).

    [100] Wang X Z, Cao J, Li H et al. Electronic Raman scattering in the 2D antiferromagnet NiPS3[J]. Science Advances, 8, eabl7707(2022).

    [101] Kargar F, Coleman E A, Ghosh S et al. Phonon and thermal properties of quasi-two-dimensional FePS3 and MnPS3 antiferromagnetic semiconductors[J]. ACS Nano, 14, 2424-2435(2020).

    [102] Song C, You Y F, Chen X Z et al. How to manipulate magnetic states of antiferromagnets[J]. Nanotechnology, 29, 112001(2018).

    [103] Jiang X H, Qin S C, Xing Z Y et al. Study on physical properties and magnetism controlling of two-dimensional magnetic materials[J]. Acta Physica Sinica, 70, 127801(2021).

    [104] Song T C, Cai X H, Tu M W Y et al. Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures[J]. Science, 360, 1214-1218(2018).

    [105] Huang B, Clark G, Klein D R et al. Electrical control of 2D magnetism in bilayer CrI3[J]. Nature Nanotechnology, 13, 544-548(2018).

    [106] Song T C, Fei Z Y, Yankowitz M et al. Switching 2D magnetic states via pressure tuning of layer stacking[J]. Nature Materials, 18, 1298-1302(2019).

    [107] Li T X, Jiang S W, Sivadas N et al. Pressure-controlled interlayer magnetism in atomically thin CrI3[J]. Nature Materials, 18, 1303-1308(2019).

    [108] León A M, González J W, Mejía-López J et al. Strain-induced phase transition in CrI3 bilayers[J]. 2D Materials, 7, 035008(2020).

    [109] Ni Z L, Haglund A V, Wang H et al. Imaging the Néel vector switching in the monolayer antiferromagnet MnPSe3 with strain-controlled Ising order[J]. Nature Nanotechnology, 16, 782-787(2021).

    [110] Matsuoka T, Haglund A, Xue R et al. Pressure-induced insulator-metal transition in two-dimensional Mott insulator NiPS3[J]. Journal of the Physical Society of Japan, 90, 124706(2021).

    [111] Coak M J, Jarvis D M, Hamidov H et al. Emergent magnetic phases in pressure-tuned van der Waals antiferromagnet FePS3[J]. Physical Review X, 11, 011024(2021).

    [112] Wang Y G, Ying J J, Zhou Z Y et al. Emergent superconductivity in an iron-based honeycomb lattice initiated by pressure-driven spin-crossover[J]. Nature Communications, 9, 1914(2018).

    [113] He C L, Xu H J, Tang J et al. Research progress of spin-orbit torques based on two-dimensional materials[J]. Acta Physica Sinica, 70, 127501(2021).

    [114] Ma X C, Tian Y, Zhao P et al. Janus MoCrSSe monolayer: a strong two dimensional polar antiferromagnet[J]. Applied Surface Science, 581, 152420(2022).

    [115] Zhu R, Zhang W, Shen W et al. Exchange bias in van der Waals CrCl3/Fe3GeTe2 heterostructures[J]. Nano Letters, 20, 5030-5035(2020).

    [116] Zhang L M, Huang X Y, Dai H W et al. Proximity-coupling-induced significant enhancement of coercive field and curie temperature in 2D van der Waals heterostructures[J]. Advanced Materials, 32, 2002032(2020).

    [117] Liu S S, Yang K, Liu W Q et al. Two-dimensional ferromagnetic superlattices[J]. National Science Review, 7, 745-754(2019).

    [118] Dai H W, Cheng H, Cai M H et al. Enhancement of the coercive field and exchange bias effect in Fe3GeTe2/MnPX3 (X = S and Se) van der Waals heterostructures[J]. ACS Applied Materials & Interfaces, 13, 24314-24320(2021).

    [119] Yang C Y, Pan L, Grutter A J et al. Termination switching of antiferromagnetic proximity effect in topological insulator[J]. Science Advances, 6, eaaz8463(2020).

    [120] Zhong D, Seyler K L, Linpeng X Y et al. Layer-resolved magnetic proximity effect in van der Waals heterostructures[J]. Nature Nanotechnology, 15, 187-191(2020).

    [121] Zollner K, Faria P E, Jr, Fabian J. Proximity exchange effects in MoSe2 and WSe2 heterostructures with CrI3: twist angle, layer, and gate dependence[J]. Physical Review B, 100, 085128(2019).

    [122] Ciorciaro L, Kroner M, Watanabe K et al. Observation of magnetic proximity effect using resonant optical spectroscopy of an electrically tunable MoSe2/CrBr3 heterostructure[J]. Physical Review Letters, 124, 197401(2020).

    [123] Onga M, Sugita Y, Ideue T et al. Antiferromagnet-semiconductor van der Waals heterostructures: interlayer interplay of exciton with magnetic ordering[J]. Nano Letters, 20, 4625-4630(2020).

    [124] Subhan F, Hong J S. Large valley splitting and enhancement of curie temperature in a two-dimensional VI3/CrI3 heterostructure[J]. The Journal of Physical Chemistry C, 124, 7156-7162(2020).

    [125] Yang K, Hu W T, Wu H et al. Magneto-optical kerr switching properties of (CrI3)2 and (CrBr3/CrI3) bilayers[J]. ACS Applied Electronic Materials, 2, 1373-1380(2020).

    [126] Kirilyuk A, Kimel A V, Rasing T. Ultrafast optical manipulation of magnetic order[J]. Reviews of Modern Physics, 82, 2731-2784(2010).

    [127] Tauchert S R, Volkov M, Ehberger D et al. Polarized phonons carry angular momentum in ultrafast demagnetization[J]. Nature, 602, 73-77(2022).

    [128] Beaurepaire E, Merle J C, Daunois A et al. Ultrafast spin dynamics in ferromagnetic nickel[J]. Physical Review Letters, 76, 4250-4253(1996).

    [129] Ren N F, Xu M L, Gu J F et al. Analysis of thermalization dynamics on ferromagnetic thin film excited by femtosecond laser[J]. Chinese Journal of Lasers, 37, 2057-2062(2010).

    [130] Su Y L, Wei Z X, Cheng L et al. Terahertz emitters based on ultrafast spin-to-charge conversion[J]. Acta Physica Sinica, 69, 204202(2020).

    [131] Radu I, Vahaplar K, Stamm C et al. Transient ferromagnetic-like state mediating ultrafast reversal of antiferromagnetically coupled spins[J]. Nature, 472, 205-208(2011).

    [132] Mikhaylovskiy R V, Hendry E, Kruglyak V V et al. Terahertz emission spectroscopy of laser-induced spin dynamics in TmFeO3 and ErFeO3 orthoferrites[J]. Physical Review B, 90, 184405(2014).

    [133] Kašpar Z, Surýnek M, Zubáč J et al. Quenching of an antiferromagnet into high resistivity states using electrical or ultrashort optical pulses[J]. Nature Electronics, 4, 30-37(2021).

    [134] Zhang X X, Jiang S W, Lee J et al. Spin dynamics slowdown near the antiferromagnetic critical point in atomically thin FePS3[J]. Nano Letters, 21, 5045-5052(2021).

    [135] Bozhko D A, Vasyuchka V I, Chumak A V et al. Magnon-phonon interactions in magnon spintronics (Review article)[J]. Low Temperature Physics, 46, 383-399(2020).

    [136] Cenker J, Huang B, Suri N et al. Direct observation of two-dimensional magnons in atomically thin CrI3[J]. Nature Physics, 17, 20-25(2021).

    [137] McCreary A, Simpson J R, Mai T T et al. Quasi-two-dimensional magnon identification in antiferromagnetic FePS3 via magneto-Raman spectroscopy[J]. Physical Review B, 101, 064416(2020).

    [138] Ivanov B A. Spin dynamics of antiferromagnets under action of femtosecond laser pulses (Review article)[J]. Low Temperature Physics, 40, 91-105(2014).

    [139] Rubano A, Satoh T, Kimel A et al. Influence of laser pulse shaping on the ultrafast dynamics in antiferromagnetic NiO[J]. Physical Review B, 82, 174431(2010).

    [140] Jin W C, Kim H H, Ye Z P et al. Raman fingerprint of two terahertz spin wave branches in a two-dimensional honeycomb Ising ferromagnet[J]. Nature Communications, 9, 5122(2018).

    [141] Zhang X X, Li L Z, Weber D et al. Gate-tunable spin waves in antiferromagnetic atomic bilayers[J]. Nature Materials, 19, 838-842(2020).

    [142] Ho C H, Hsu T Y, Muhimmah L C. The band-edge excitons observed in few-layer NiPS3[J]. npj 2D Materials and Applications, 5, 8(2021).

    [143] Afanasiev D, Hortensius J R, Matthiesen M et al. Controlling the anisotropy of a van der Waals antiferromagnet with light[J]. Science Advances, 7, eabf3096(2021).

    [144] Nova T F, Cartella A, Cantaluppi A et al. An effective magnetic field from optically driven phonons[J]. Nature Physics, 13, 132-136(2017).

    [145] Ghosh A, Palit M, Maity S et al. Spin-phonon coupling and magnon scattering in few-layer antiferromagnetic FePS3[J]. Physical Review B, 103, 064431(2021).

    [146] Lee K, Lee D K, Yang D S et al. Superluminal-like magnon propagation in antiferromagnetic NiO at nanoscale distances[J]. Nature Nanotechnology, 16, 1337-1341(2021).

    [147] Xing W Y, Qiu L Y, Wang X R et al. Magnon transport in quasi-two-dimensional van der Waals antiferromagnets[J]. Physical Review X, 9, 011026(2019).

    [148] Cornelissen L J, Liu J, Duine R A et al. Long-distance transport of magnon spin information in a magnetic insulator at room temperature[J]. Nature Physics, 11, 1022-1026(2015).

    [149] Bae Y J, Wang J, Xu J W et al. Exciton-coupled coherent magnons in a 2D semiconductor[J]. Nature, 609, 282-286(2022).

    [150] Hortensius J R, Afanasiev D, Matthiesen M et al. Coherent spin-wave transport in an antiferromagnet[J]. Nature Physics, 17, 1001-1006(2021).

    [151] Zhao C, Norden T, Zhang P Y et al. Enhanced valley splitting in monolayer WSe2 due to magnetic exchange field[J]. Nature Nanotechnology, 12, 757-762(2017).

    [152] Jin W C, Kim H H, Ye Z P et al. Observation of the polaronic character of excitons in a two-dimensional semiconducting magnet CrI3[J]. Nature Communications, 11, 4780(2020).

    [153] Wu M, Li Z L, Cao T et al. Physical origin of giant excitonic and magneto-optical responses in two-dimensional ferromagnetic insulators[J]. Nature Communications, 10, 2371(2019).

    [154] Acharya S, Pashov D, Rudenko A N et al. Real- and momentum-space description of the excitons in bulk and monolayer chromium tri-halides[J]. npj 2D Materials and Applications, 6, 33(2022).

    [155] Kim S Y, Kim T Y, Sandilands L J et al. Charge-spin correlation in van der Waals antiferromagnet NiPS3[J]. Physical Review Letters, 120, 136402(2018).

    [156] Hwangbo K, Zhang Q, Jiang Q N et al. Highly anisotropic excitons and multiple phonon bound states in a van der Waals antiferromagnetic insulator[J]. Nature Nanotechnology, 16, 655-660(2021).

    [157] Ergeçen E, Ilyas B, Mao D et al. Magnetically brightened dark electron-phonon bound states in a van der Waals antiferromagnet[J]. Nature Communications, 13, 98(2022).

    [158] Son S, Lee Y J, Kim J H et al. Multiferroic-enabled magnetic-excitons in 2D quantum-entangled van der Waals antiferromagnet NiI2[J]. Advanced Materials, 34, 2109144(2022).

    [159] Birowska M, Faria P E, Jr, Fabian J et al. Large exciton binding energies in MnPS3 as a case study of a van der Waals layered magnet[J]. Physical Review B, 103, L121108(2021).

    [160] Gu P F, Tan Q H, Wan Y et al. Photoluminescent quantum interference in a van der Waals magnet preserved by symmetry breaking[J]. ACS Nano, 14, 1003-1010(2020).

    [161] Tang Y X, Zhang Y B, Ouyang H et al. Ultrafast response of a hybrid device based on strongly coupled monolayer WS2 and photonic crystals: the effect of photoinduced coulombic screening[J]. Laser & Photonics Reviews, 14, 1900419(2020).

    [162] Wang Y M, Zhang J F, Li C H et al. Raman scattering study of magnetic layered MPS3 crystals(M = Mn, Fe, Ni)[J]. Chinese Physics B, 28, 056301(2019).

    [163] Ma B W, Fiete G A. Antiferromagnetic insulators with tunable magnon-polaron Chern numbers induced by in-plane optical phonons[J]. Physical Review B, 105, L100402(2022).

    [164] Liu S, Granados Del Águila A, Bhowmick D et al. Direct observation of magnon-phonon strong coupling in two-dimensional antiferromagnet at high magnetic fields[J]. Physical Review Letters, 127, 097401(2021).

    [165] Vaclavkova D, Palit M, Wyzula J et al. Magnon polarons in the van der Waals antiferromagnet FePS3[J]. Physical Review B, 104, 134437(2021).

    [166] Zhang Q, Ozerov M, Boström E V et al. Coherent strong-coupling of terahertz magnons and phonons in a van der Waals antiferromagnetic insulator[EB/OL]. https://arxiv.org/abs/2108.11619

    [167] Sun Y J, Lai J M, Pang S M et al. Magneto-Raman study of magnon-phonon coupling in two-dimensional Ising antiferromagnetic FePS3[J]. The Journal of Physical Chemistry Letters, 13, 1533-1539(2022).

    [168] Mai T T, Garrity K F, McCreary A et al. Magnon-phonon hybridization in 2D antiferromagnet MnPSe3[J]. Science Advances, 7, eabj3106(2021).

    [169] MacNeill D, Hou J T, Klein D R et al. Gigahertz frequency antiferromagnetic resonance and strong magnon-magnon coupling in the layered crystal CrCl3[J]. Physical Review Letters, 123, 047204(2019).

    [170] Zhang Q, Xue J S, Sun Y T et al. Coupling of microwave photons to optical and acoustic magnon modes in the layered antiferromagnetic insulator CrCl3[J]. Physical Review B, 104, 094303(2021).

    [171] Rückriegel A, Duine R A. Long-range phonon spin transport in ferromagnet-nonmagnetic insulator heterostructures[J]. Physical Review Letters, 124, 117201(2020).

    [172] Kudlacik D, Ivanov V Y, Yakovlev D R et al. Exciton and exciton-magnon photoluminescence in the antiferromagnet CuB2O4[J]. Physical Review B, 102, 035128(2020).

    [173] Gloppe A, Onga M, Hisatomi R et al. Magnon-exciton proximity coupling at a van der Waals heterointerface[J]. Physical Review B, 105, L121403(2022).

    [174] Sato T, Abe N, Kimura S et al. Magnetochiral dichroism in a collinear antiferromagnet with No magnetization[J]. Physical Review Letters, 124, 217402(2020).

    [175] Atzori M, Santanni F, Breslavetz I et al. Magnetic anisotropy drives magnetochiral dichroism in a chiral molecular helix probed with visible light[J]. Journal of the American Chemical Society, 142, 13908-13916(2020).

    [176] Chen W, Sun Z Y, Wang Z J et al. Direct observation of van der Waals stacking-dependent interlayer magnetism[J]. Science, 366, 983-987(2019).

    [177] Thiel L, Wang Z, Tschudin M A et al. Probing magnetism in 2D materials at the nanoscale with single-spin microscopy[J]. Science, 364, 973-976(2019).

    [178] Scholl P, Schuler M, Williams H J et al. Quantum simulation of 2D antiferromagnets with hundreds of Rydberg atoms[J]. Nature, 595, 233-238(2021).

    [179] Cheong S W, Fiebig M, Wu W D et al. Seeing is believing: visualization of antiferromagnetic domains[J]. npj Quantum Materials, 5, 3(2020).

    [180] Ma Z J, Wei R F, Hu Z L et al. 2D materials and quasi-2D materials: nonlinear optical properties and corresponding applications[J]. Chinese Journal of Lasers, 44, 0703002(2017).

    [181] Fina I, Marti X, Yi D et al. Anisotropic magnetoresistance in an antiferromagnetic semiconductor[J]. Nature Communications, 5, 4671(2014).

    [182] Wang Z, Gutiérrez-Lezama I, Ubrig N et al. Very large tunneling magnetoresistance in layered magnetic semiconductor CrI3[J]. Nature Communications, 9, 2516(2018).

    [183] Gomonay O, Baltz V, Brataas A et al. Antiferromagnetic spin textures and dynamics[J]. Nature Physics, 14, 213-216(2018).

    [184] Fan F, Zhao D, Tan Z Y et al. Magnetically induced terahertz birefringence and chirality manipulation in transverse‐magnetized metasurface[J]. Advanced Optical Materials, 9, 2101097(2021).

    [185] Galkina E G, Ivanov B A. Dynamic solitons in antiferromagnets (review article)[J]. Low Temperature Physics, 44, 618-633(2018).

    [186] Qaiumzadeh A, Skarsvåg H, Holmqvist C et al. Spin superfluidity in biaxial antiferromagnetic insulators[J]. Physical Review Letters, 118, 137201(2017).

    [187] Jiao Y L, Wu W K, Ma F X et al. Room temperature ferromagnetism and antiferromagnetism in two-dimensional iron arsenides[J]. Nanoscale, 11, 16508-16514(2019).

    [188] Wu D X, Zhuo Z W, Lü H F et al. Two-dimensional Cr2X3S3 (X = Br, I) Janus semiconductor with intrinsic room-temperature magnetism[J]. The Journal of Physical Chemistry Letters, 12, 2905-2911(2021).

    [189] Yang X X, Zhou X D, Feng W X et al. Tunable magneto-optical effect, anomalous Hall effect, and anomalous Nernst effect in the two-dimensional room-temperature ferromagnet 1T-CrTe2[J]. Physical Review B, 103, 024436(2021).

    Qirui Liu, Yuxiang Tang, Ke Wei, Tian Jiang. Progress of Research on Two‐dimensional Antiferromagnets with Magneto‑optic Properties[J]. Chinese Journal of Lasers, 2023, 50(1): 0113007
    Download Citation