• Photonics Insights
  • Vol. 1, Issue 2, R06 (2022)
Kai Zhang1, Shengshuai Liu1, Yingxuan Chen1, Xutong Wang1, and Jietai Jing1、2、3、*
Author Affiliations
  • 1State Key Laboratory of Precision Spectroscopy, Joint Institute of Advanced Science and Technology, School of Physics and Electronic Science, East China Normal University, Shanghai, China
  • 2CAS Center for Excellence in Ultra-intense Laser Science, Shanghai, China
  • 3Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, China
  • show less
    DOI: 10.3788/PI.2022.R06 Cite this Article Set citation alerts
    Kai Zhang, Shengshuai Liu, Yingxuan Chen, Xutong Wang, Jietai Jing. Optical quantum states based on hot atomic ensembles and their applications[J]. Photonics Insights, 2022, 1(2): R06 Copy Citation Text show less
    References

    [1] J.-W. Pan et al. Multiphoton entanglement and interferometry. Rev. Mod. Phys., 84, 777(2012).

    [2] S. L. Braunstein, P. van Loock. Quantum information with continuous variables. Rev. Mod. Phys., 77, 513(2005).

    [3] P. G. Kwiat et al. New high-intensity source of polarization-entangled photon pairs. Phys. Rev. Lett., 75, 4337(1995).

    [4] A. MacRae et al. Tomography of a high-purity narrowband photon from a transient atomic collective excitation. Phys. Rev. Lett., 109, 033601(2012).

    [5] Z. Qin et al. Complete temporal characterization of a single photon. Light Sci. Appl., 4, e298(2015).

    [6] M. H. Devoret, R. J. Schoelkopf. Superconducting circuits for quantum information: an outlook. Science, 339, 1169(2013).

    [7] M. Kjaergaard et al. Superconducting qubits: current state of play. Annu. Rev. Condens. Matter Phys., 11, 369(2020).

    [8] C. Silberhorn et al. Generation of continuous variable Einstein-Podolsky-Rosen entanglement via the Kerr nonlinearity in an optical fiber. Phys. Rev. Lett., 86, 4267(2001).

    [9] J. Jing et al. Experimental demonstration of tripartite entanglement and controlled dense coding for continuous variables. Phys. Rev. Lett., 90, 167903(2003).

    [10] C. Fabre, N. Treps. Modes and states in quantum optics. Rev. Mod. Phys., 92, 035005(2020).

    [11] C. Eichler et al. Observation of two-mode squeezing in the microwave frequency domain. Phys. Rev. Lett., 107, 113601(2011).

    [12] H. Zhong et al. 12-Photon entanglement and scalable scattershot boson sampling with optimal entangled-photon pairs from parametric down-conversion. Phys. Rev. Lett., 121, 250505(2018).

    [13] Y. Huang et al. Experimental generation of an eight-photon Greenberger-Horne-Zeilinger state. Nat. Commun., 2, 546(2011).

    [14] C. Reimer et al. Generation of multiphoton entangled quantum states by means of integrated frequency combs. Science, 351, 1176(2016).

    [15] A. Mair et al. Entanglement of the orbital angular momentum states of photons. Nature, 412, 313(2001).

    [16] A. C. Data et al. Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities. Nat. Phys., 7, 677(2011).

    [17] M. Malik et al. Multi-photon entanglement in high dimensions. Nat. Photon., 10, 248(2016).

    [18] D. Ding et al. High-dimensional entanglement between distant atomic-ensemble memories. Light Sci. Appl., 5, e16157(2016).

    [19] M. Kues et al. On-chip generation of high-dimensional entangled quantum states and their coherent control. Nature, 546, 622(2017).

    [20] Y. Zhang et al. Engineering two-photon high-dimensional states through quantum interference. Sci. Adv., 2, e1501165(2016).

    [21] X. Wang et al. 18-Qubit entanglement with six photons’ three degrees of freedom. Phys. Rev. Lett., 120, 260502(2018).

    [22] W. Zhang et al. Experimental realization of entanglement in multiple degrees of freedom between two quantum memories. Nat. Commun., 7, 13514(2016).

    [23] C. Reimer et al. High-dimensional one-way quantum processing implemented on d-level cluster states. Nat. Phys., 15, 148(2019).

    [24] S. Liao et al. Satellite-to-ground quantum key distribution. Nature, 549, 43(2017).

    [25] J. Yin et al. Satellite-based entanglement distribution over 1200 kilometers. Science, 356, 1140(2017).

    [26] J. Yin et al. Entanglement-based secure quantum cryptography over 1,120 kilometers. Nature, 582, 501(2020).

    [27] W. Asavanant et al. Generation of time-domain-multiplexed two-dimensional cluster state. Science, 366, 373(2019).

    [28] M. V. Larsen et al. Deterministic generation of a two-dimensional cluster state. Science, 366, 369(2019).

    [29] X. Pan et al. Orbital-angular-momentum multiplexed continuous-variable entanglement from four-wave mixing in hot atomic vapor. Phys. Rev. Lett., 123, 070506(2019).

    [30] U. L. Andersen et al. Hybrid discrete- and continuous-variable quantum information. Nat. Phys., 11, 713(2015).

    [31] R. E. Slusher et al. Observation of squeezed states generated by four-wave mixing in an optical cavity. Phys. Rev. Lett., 55, 2409(1985).

    [32] L. A. Wu et al. Generation of squeezed states by parametric down conversion. Phys. Rev. Lett., 57, 2520(1986).

    [33] R. M. Shelby et al. Broad-band parametric deamplification of quantum noise in an optical fiber. Phys. Rev. Lett., 57, 691(1986).

    [34] H. Vahlbruch et al. Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency. Phys. Rev. Lett., 117, 110801(2016).

    [35] S. Shi et al. Detection and perfect fitting of 13.2 dB squeezed vacuum states by considering green-light-induced infrared absorption. Opt. Lett., 43, 5411(2018).

    [36] The LIGO. A gravitational wave observatory operating beyond the quantum shot-noise limit. Nat. Phys., 7, 962(2011).

    [37] The LIGO. Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light. Nat. Photon., 7, 613(2013).

    [38] H. Grote et al. First long-term application of squeezed states of light in a gravitational-wave observatory. Phys. Rev. Lett., 110, 181101(2013).

    [39] N. Treps et al. A quantum laser pointer. Science, 301, 940(2003).

    [40] R. C. Pooser, B. Lawie. Ultrasensitive measurement of microcantilever displacement below the shot-noise limit. Optica, 2, 393(2015).

    [41] K. Liu et al. Squeezing-enhanced rotating-angle measurement beyond the quantum limit. Appl. Phys. Lett., 113, 261103(2018).

    [42] B. Lamine, C. Fabre, N. Treps. Quantum improvement of time transfer between remote clocks. Phys. Rev. Lett., 101, 123601(2008).

    [43] A. Einstein, B. Podolsky, N. Rosen. Can quantum mechanical description of physical reality be considered complete. Phys. Rev., 47, 777(1935).

    [44] Z. Y. Ou et al. Realization of the Einstein-Podolsky-Rosen paradox for continuous-variables. Phys. Rev. Lett., 68, 3663(1992).

    [45] M. D. Reid. Demonstration of the Einstein-Podolsky-Rosen paradox using nondegenerate parametric amplification. Phys. Rev. A, 40, 913(1989).

    [46] L. M. Duan et al. Inseparability criterion for continuous variable systems. Phys. Rev. Lett., 84, 2722(2000).

    [47] R. Simon. Peres-horodecki separability criterion for continuous variable systems. Phys. Rev. Lett., 84, 2726(2000).

    [48] Y. Zhang et al. Experimental generation of bright two-mode quadrature squeezed light from a narrow-band nondegenerate optical parametric amplifier. Phys. Rev. A, 62, 023813(2000).

    [49] P. van Loock, S. L. Braunstein. Multipartite entanglement for continuous variables: a quantum teleportation network. Phys. Rev. Lett., 84, 3482(2000).

    [50] P. van Loock, S. L. Braunstein. Telecloning of continuous quantum variables. Phys. Rev. Lett., 87, 247901(2001).

    [51] T. Aoki et al. Experimental creation of a fully inseparable tripartite continuous-variable state. Phys. Rev. Lett., 91, 080404(2003).

    [52] H. Yonezawa, T. Aoki, A. Furusawa. Demonstration of a quantum teleportation network for continuous variables. Nature, 431, 430(2004).

    [53] S. Koike et al. Demonstration of quantum telecloning of optical coherent states. Phys. Rev. Lett., 96, 060504(2006).

    [54] X. Su et al. Experimental preparation of quadripartite cluster and Greenberger-Horne-Zeilinger entangled states for continuous variables. Phys. Rev. Lett., 98, 070502(2007).

    [55] X. Su et al. Experimental preparation of eight-partite cluster state for photonic qumodes. Opt. Lett., 37, 5178(2012).

    [56] F. A. S. Barbosa et al. Robustness of bipartite Gaussian entangled beams propagating in lossy channels. Nat. Photon., 4, 858(2010).

    [57] A. S. Villar et al. Generation of bright two-color continuous variable entanglement. Phys. Rev. Lett., 95, 243603(2005).

    [58] F. A. S. Barbosa et al. Hexapartite entanglement in an above-threshold optical parametric oscillator. Phys. Rev. Lett., 121, 073601(2018).

    [59] L. F. Muñoz-Martínez et al. Exploring six modes of an optical parametric oscillator. Phys. Rev. A, 98, 023823(2018).

    [60] S. Yokoyama et al. Ultra-large-scale continuous-variable cluster states multiplexed in the time domain. Nat. Photon., 7, 982(2013).

    [61] S. Armstrong et al. Programmable multimode quantum networks. Nat. Commun., 3, 1026(2012).

    [62] M. Chen, N. C. Menicucci, O. Pfister. Experimental realization of multipartite entanglement of 60 modes of a quantum optical frequency comb. Phys. Rev. Lett., 112, 120505(2014).

    [63] Z. Yang et al. A squeezed quantum microcomb on a chip. Nat. Commun., 12, 4781(2021).

    [64] J. Roslund et al. Wavelength-multiplexed quantum networks with ultrafast frequency combs. Nat. Photon., 8, 109(2014).

    [65] Y. Cai et al. Multimode entanglement in reconfigurable graph states using optical frequency combs. Nat. Commun., 8, 15645(2017).

    [66] S. L. Braunstein, H. J. Kimble. Teleportation of continuous quantum variables. Phys. Rev. Lett., 80, 869(1998).

    [67] A. Furusawa et al. Unconditional quantum teleportation. Science, 282, 706(1998).

    [68] N. Lee et al. Teleportation of nonclassical wave packets of light. Science, 332, 330(2011).

    [69] M. Huo et al. Deterministic quantum teleportation through fiber channels. Sci. Adv., 4, eaas9401(2018).

    [70] X. Li et al. Quantum dense coding exploiting a bright Einstein-Podolsky-Rosen beam. Phys. Rev. Lett., 88, 047904(2002).

    [71] X. Jia et al. Experimental demonstration of unconditional entanglement swapping for continuous variables. Phys. Rev. Lett., 93, 250503(2004).

    [72] C. F. McCormick et al. Strong relative intensity squeezing by four-wave mixing in rubidium vapor. Opt. Lett., 32, 178(2007).

    [73] R. C. Pooser et al. Quantum correlated light beams from nondegenerate four-wave mixing in an atomic vapor: the D1 and D2 lines of 85Rb and 87Rb. Opt. Express, 17, 16722(2009).

    [74] J. D. Swaim, R. T. Glasser. Squeezed-twin-beam generation in strongly absorbing media. Phys. Rev. A, 96, 033818(2017).

    [75] M. Guo et al. Experimental investigation of high-frequency-difference twin beams in hot cesium atoms. Phys. Rev. A, 89, 033813(2014).

    [76] R. Ma et al. Generating quantum correlated twin beams by four-wave mixing in hot cesium vapor. Phys. Rev. A, 96, 043843(2017).

    [77] A. M. Marino, V. Boyer, P. D. Lett. Violation of the Cauchy-Schwarz inequality in the macroscopic regime. Phys. Rev. Lett., 100, 233601(2008).

    [78] H. Vahlbruch et al. Observation of squeezed light with 10-dB quantum-noise reduction. Phys. Rev. Lett., 100, 033602(2008).

    [79] D. Zhang et al. Enhanced intensity-difference squeezing via energy-level modulations in hot atomic media. Phys. Rev. A, 96, 043847(2017).

    [80] Q. Glorieux et al. Generation of pulsed bipartite entanglement using four-wave mixing. New J. Phys., 14, 123024(2012).

    [81] D. Budker, M. Romalis. Optical magnetometry. Nat. Phys., 3, 227(2007).

    [82] A. M. Marino, P. D. Lett. Absolute calibration of photodiodes with bright twin beams. J. Mod. Opt., 58, 328(2011).

    [83] C. F. McCormick et al. Strong low-frequency quantum correlations from a four-wave-mixing amplifier. Phys. Rev. A, 78, 043816(2008).

    [84] M. C. Wu et al. Twin-beam intensity-difference squeezing below 10 Hz. Opt. Express, 27, 4769(2019).

    [85] M. I. Kolobov. Quantum Imaging(2006).

    [86] V. Boyer, A. M. Marino, P. D. Lett. Generation of spatially broadband twin beams for quantum imaging. Phys. Rev. Lett., 100, 143601(2008).

    [87] M. W. Holtfrerich, A. M. Marino. Control of the size of the coherence area in entangled twin besms. Phys. Rev. A, 93, 063821(2016).

    [88] C. S. Embrey et al. Observation of localized multi-spatial-mode quadrature squeezing. Phys. Rev. X, 5, 031004(2015).

    [89] Q. Glorieux et al. Temporally multiplexed storage of images in a gradient echo memory. Opt. Express, 20, 12350(2012).

    [90] D.-S. Ding et al. Image transfer through two sequential four-wave mixing processes in hot atomic vapor. Phys. Rev. A, 85, 053815(2012).

    [91] J. B. Clark et al. Imaging using quantum noise properties of light. Opt. Express, 20, 17050(2012).

    [92] E. Brambilla et al. High-sensitivity imaging with multi-mode twin beams. Phys. Rev. A, 77, 053807(2008).

    [93] V. Boyer et al. Entangled images from four-wave mixing. Science, 321, 544(2008).

    [94] B. J. Lawrie, R. C. Pooser. Toward real-time quantum imaging with a single pixel camera. Opt. Express, 21, 7549(2013).

    [95] A. M. Marino et al. Tunable delay of Einstein–Podolsky–Rosen entanglement. Nature, 457, 859(2009).

    [96] V. Boyer et al. Ultraslow propagation of matched pulses by four-wave mixing in an atomic vapor. Phys. Rev. Lett., 99, 143601(2007).

    [97] R. T. Glasser, U. Vogl, P. D. Lett. Stimulated generation of superluminal light pulses via four-wave mixing. Phys. Rev. Lett., 108, 173902(2012).

    [98] U. Vogl et al. Advanced quantum noise correlations. New J. Phys., 16, 013011(2014).

    [99] J. B. Clark et al. Quantum mutual information of an entangled state propagating through a fast-light medium. Nat. Photon., 8, 515(2014).

    [100] N. V. Corzo et al. Noiseless optical amplifier operating on hundreds of spatial modes. Phys. Rev. Lett., 109, 043602(2012).

    [101] N. Corzo et al. Multi-spatial-mode single-beam quadrature squeezed states of light from four-wave mixing in hot rubidium vapor. Opt. Express, 19, 21358(2011).

    [102] S. Liu, Y. Lou, J. Jing. Interference-induced quantum squeezing enhancement in a two-beam phase-sensitive amplifier. Phys. Rev. Lett., 123, 113602(2019).

    [103] S. Liu, Y. Lou, J. Jing. Phase manipulated two-mode entangled state from a phase-sensitive amplifier. Opt. Express, 29, 38971(2021).

    [104] O. Danaci, C. Rios, R. T. Glasser. All-optical mode conversion via spatially multimode four-wave mixing. New J. Phys., 18, 073032(2016).

    [105] S. Kim, A. M. Marino. Atomic resonant single-mode squeezed light from four-wave mixing through feedforward. Opt. Lett., 44, 4630(2019).

    [106] S. Kim, A. M. Marino. Generation of 87Rb resonant bright two-mode squeezed light with four-wave mixing. Opt. Express, 26, 33366(2018).

    [107] P. Gupta et al. Effect of imperfect homodyne visibility on multi-spatial-mode two-mode squeezing measurements. Opt. Express, 28, 652(2020).

    [108] U. Vogl et al. Experimental characterization of Gaussian quantum discord generated by four-wave mixing. Phys. Rev. A, 87, 010101(R)(2013).

    [109] A. Kumar, A. M. Marino. Spatial squeezing in bright twin beams generated with four-wave mixing: constraints on characterization with an electron-multiplying charge-coupled-device camera. Phys. Rev. A, 100, 063828(2019).

    [110] A. Kumar, G. Nirala, A. M. Marino. Einstein–Podolsky–Rosen paradox with position–momentum entangled macroscopic twin beams. Quantum Sci. Technol., 6, 045016(2021).

    [111] A. Kumar, H. Nunley, A. M. Marino. Comparison of coherence-area measurement techniques for bright entangled twin beams. Phys. Rev. A, 98, 043853(2018).

    [112] B. J. Lawrie et al. Robust and compact entanglement generation from diode-laser-pumped four-wave mixing. Appl. Phys. Lett., 108, 151107(2016).

    [113] A. M. Guerrero et al. Quantum noise correlations of an optical parametric oscillator based on a nondegenerate four wave mixing process in hot alkali atoms. Phys. Rev. Lett., 125, 083601(2020).

    [114] C. M. Caves. Quantum-mechanical noise in an interferometer. Phys. Rev. D, 23, 1693(1981).

    [115] F. Wolfgramm et al. Squeezed-light optical magnetometry. Phys. Rev. Lett., 105, 053601(2010).

    [116] B. Li et al. Quantum enhanced optomechanical magnetometry. Optica, 5, 850(2018).

    [117] B. J. Lawrie et al. Quantum sensing with squeezed light. ACS Photonics, 6, 1307(2019).

    [118] W. Fan, B. J. Lawrie, R. C. Pooser. Quantum plasmonic sensing. Phys. Rev. A, 92, 053812(2015).

    [119] R. C. Pooser, B. J. Lawrie. Plasmonic trace sensing below the photon shot noise limit. ACS Photonics, 3, 8(2016).

    [120] M. Dowran et al. Quantum-enhanced plasmonic sensing. Optica, 5, 628(2018).

    [121] B. J. Lawrie, P. G. Evans, R. C. Pooser. Extraordinary optical transmission of multimode quantum correlations via localized surface plasmons. Phys. Rev. Lett., 110, 156802(2013).

    [122] M. W. Holtfreric et al. Toward quantum plasmonic networks. Optica, 3, 985(2016).

    [123] M. C. Wu et al. Two-beam coupling in the production of quantum correlated images by four-wave mixing. Opt. Express, 29, 16665(2021).

    [124] J. Jing et al. Realization of a nonlinear interferometer with parametric amplifiers. Appl. Phys. Lett., 99, 011110(2011).

    [125] A. M. Marino, N. V. Corzo Trejo, P. D. Lett. Effect of losses on the performance of an SU(1,1) interferometer. Phys. Rev. A, 86, 023844(2012).

    [126] F. Hudelist et al. Quantum metrology with parametric amplifier-based photon correlation interferometers. Nat. Commun., 5, 3049(2014).

    [127] B. E. Anderson et al. Phase sensing beyond the standard quantum limit with a variation on the SU(1,1) interferometer. Optica, 4, 752(2017).

    [128] R. C. Pooser et al. Truncated nonlinear interferometry for quantum-enhanced atomic force microscopy. Phys. Rev. Lett., 124, 230504(2020).

    [129] J. M. Lukens, N. A. Peters, R. C. Pooser. Naturally stable Sagnac–Michelson nonlinear interferometer. Opt. Lett., 41, 5438(2016).

    [130] X. Guo et al. Distributed quantum sensing in a continuous-variable entangled network. Nat. Phys., 16, 281(2020).

    [131] Y. Xia et al. Demonstration of a reconfigurable entangled radio-frequency photonic sensor network. Phys. Rev. Lett., 124, 150502(2020).

    [132] Y. Zhou et al. Quantum secret sharing among four players using multipartite bound entanglement of an optical field. Phys. Rev. Lett., 121, 150502(2018).

    [133] A. S. Coelho et al. Three-color entanglement. Science, 326, 823(2009).

    [134] X. Jia et al. Experimental realization of three-color entanglement at optical fiber communication and atomic storage wavelengths. Phys. Rev. Lett., 109, 253604(2012).

    [135] Z. Qin et al. Experimental generation of multiple quantum correlated beams from hot rubidium vapor. Phys. Rev. Lett., 113, 023602(2014).

    [136] L. Cao et al. Experimental generation of quadruple quantum-correlated beams from hot rubidium vapor by cascaded four-wave mixing using spatial multiplexing. Phys. Rev. A, 95, 023803(2017).

    [137] H. Wang, C. Fabre, J. Jing. Single-step fabrication of scalable multimode quantum resources using four-wave mixing with a spatially structured pump. Phys. Rev. A, 95, 051802(2017).

    [138] K. Zhang et al. Reconfigurable hexapartite entanglement by spatially multiplexed four-wave mixing processes. Phys. Rev. Lett., 124, 090501(2020).

    [139] S. Liu, H. Wang, J. Jing. Two-beam pumped cascaded four-wave-mixing process for producing multiple-beam quantum correlation. Phys. Rev. A, 97, 043846(2018).

    [140] S. Liu, Y. Lou, J. Jing. Experimental characterization of multiple quantum correlated beams in two-beam pumped cascaded four-wave mixing process. Opt. Express, 27, 37999(2019).

    [141] J. D. Swaim et al. Multimode four-wave mixing with a spatially structured pump. Opt. Lett., 43, 2716(2018).

    [142] E. M. Knutson et al. Phase-sensitive amplification via multi-phase-matched four-wave mixing. Opt. Express, 28, 22748(2020).

    [143] E. M. Knutson et al. Optimal mode configuration for multiple phase-matched four-wave-mixing processes. Phys. Rev. A, 98, 013828(2018).

    [144] M. E. J. Friese et al. Optical angular-momentum transfer to trapped absorbing particles. Phys. Rev. A, 54, 1593(1996).

    [145] G. Gibson et al. Free-space information transfer using light beams carrying orbital angular momentum. Opt. Express, 12, 5448(2004).

    [146] M. F. Andersen et al. Quantized rotation of atoms from photons with orbital angular momentum. Phys. Rev. Lett., 97, 170406(2006).

    [147] L. Allen et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A, 45, 8185(1992).

    [148] R. Fickler et al. Quantum entanglement of high angular momenta. Science, 338, 640(2012).

    [149] A. M. Marino et al. Delocalized correlations in twin light beams with orbital angular momentum. Phys. Rev. Lett., 101, 093602(2008).

    [150] J. Wang et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photon., 6, 488(2012).

    [151] N. Bozinovic et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science, 340, 1545(2013).

    [152] A. Trichili et al. Encoding information using Laguerre Gaussian modes over free space turbulence media. Opt. Lett., 41, 3086(2016).

    [153] R. C. Devlin et al. Arbitrary spin-to–orbital angular momentum conversion of light. Science, 358, 896(2017).

    [154] X. Wang et al. Quantum teleportation of multiple degrees of freedom of a single photon. Nature, 518, 516(2015).

    [155] T.-M. Zhao, Y. S. Ihn, Y.-H. Kim. Direct generation of narrow-band hyperentangled photons. Phys. Rev. Lett., 122, 123607(2019).

    [156] Y. Zhang et al. Simultaneous entanglement swapping of multiple orbital angular momentum states of light. Nat. Commun., 8, 632(2017).

    [157] A. Vaziri, G. Weihs, A. Zeilinger. Experimental two-photon, three-dimensional entanglement for quantum communication. Phys. Rev. Lett., 89, 240401(2002).

    [158] S. Franke-Arnold et al. Uncertainty principle for angular position and angular momentum. New J. Phys., 6, 103(2004).

    [159] S. S. R. Oemrawsingh et al. Experimental demonstration of fractional orbital angular momentum entanglement of two photons. Phys. Rev. Lett., 95, 240501(2005).

    [160] G. Molina-Terriza, J. P. Torres, L. Torner. Twisted photons. Nat. Phys., 3, 305(2007).

    [161] J. Leach et al. Quantum correlations in optical angle–orbital angular momentum variables. Science, 329, 662(2010).

    [162] A. M. Yao. Angular momentum decomposition of entangled photons with an arbitrary pump. New J. Phys., 13, 053048(2011).

    [163] D. S. Ding et al. Quantum storage of orbital angular momentum entanglement in an atomic ensemble. Phys. Rev. Lett., 114, 050502(2015).

    [164] Z. Q. Zhou et al. Quantum storage of three-dimensional orbital-angular-momentum entanglement in a crystal. Phys. Rev. Lett., 115, 070502(2015).

    [165] Z. Y. Zhou et al. Orbital angular momentum-entanglement frequency transducer. Phys. Rev. Lett., 117, 103601(2016).

    [166] B. C. Hiesmayr, M. J. A. de Dood, W. Löffler. Observation of four-photon orbital angular momentum entanglement. Phys. Rev. Lett., 116, 073601(2016).

    [167] M. Mafu et al. Higher-dimensional orbital-angular-momentum-based quantum key distribution with mutually unbiased bases. Phys. Rev. A, 88, 032305(2013).

    [168] A. HamadouIbrahim et al. Orbital-angular-momentum entanglement in turbulence. Phys. Rev. A, 88, 012312(2013).

    [169] A. Sit et al. High-dimensional intracity quantum cryptography with structured photons. Optica, 4, 1006(2017).

    [170] F. Bouchard, R. Fickler, E. Karimi. High-dimensional quantum cloning and applications to quantum hacking. Sci. Adv., 3, e1601915(2017).

    [171] M. Krenn et al. Generation and confirmation of a (100 × 100)-dimensional entangled quantum system. Proc. Natl. Acad. Sci. U.S.A., 111, 6243(2014).

    [172] S. P. Walborn et al. Entanglement and conservation of orbital angular momentum in spontaneous parametric down-conversion. Phys. Rev. A, 69, 023811(2004).

    [173] C. K. Law, J. H. Eberly. Analysis and interpretation of high transverse entanglement in optical parametric down conversion. Phys. Rev. Lett., 92, 127903(2004).

    [174] L. K. Shalm et al. Three-photon energy–time entanglement. Nat. Phys., 9, 19(2013).

    [175] C. Weedbrook et al. Gaussian quantum information. Rev. Mod. Phys., 84, 621(2012).

    [176] S. Li et al. Deterministic generation of orbital-angular-momentum multiplexed tripartite entanglement. Phys. Rev. Lett., 124, 083605(2020).

    [177] W. Wang, K. Zhang, J. Jing. Large-scale quantum network over 66 orbital angular momentum optical modes. Phys. Rev. Lett., 125, 140501(2020).

    [178] S. Tanzilli et al. On the genesis and evolution of integrated quantum optics. Laser Photonics Rev., 6, 115(2012).

    [179] L. Caspani et al. Integrated sources of photon quantum states based on nonlinear optics. Light Sci. Appl., 6, e17100(2017).

    [180] M. Kues et al. Quantum optical microcombs. Nat. Photon., 13, 170(2019).

    [181] F. Lenzini et al. Integrated photonic platform for quantum information with continuous variables. Sci. Adv., 4, eaat9331(2018).

    [182] C. H. Bennett et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett., 70, 1895(1993).

    [183] D. Bouwmeester et al. Experimental quantum teleportation. Nature, 390, 575(1997).

    [184] M. A. Nielsen, E. Knill, R. Laflamme. Complete quantum teleportation using nuclear magnetic resonance. Nature, 396, 52(1998).

    [185] I. Marcikic et al. Long-distance teleportation of qubits at telecommunication wavelengths. Nature, 421, 509(2003).

    [186] M. Riebe et al. Deterministic quantum teleportation with atoms. Nature, 429, 734(2004).

    [187] M. D. Barrett et al. Deterministic quantum teleportation of atomic qubits. Nature, 429, 737(2004).

    [188] J. F. Sherson et al. Quantum teleportation between light and matter. Nature, 443, 557(2006).

    [189] S. Olmschenk et al. Quantum teleportation between distant matter qubits. Science, 323, 486(2009).

    [190] L. Steffen et al. Deterministic quantum teleportation with feed-forward in a solid state system. Nature, 500, 319(2013).

    [191] J. Yin et al. Quantum teleportation and entanglement distribution over 100-kilometre free-space channels. Nature, 488, 185(2012).

    [192] X.-S. Ma et al. Quantum teleportation over 143 kilometres using active feed-forward. Nature, 489, 269(2012).

    [193] J.-G. Ren et al. Ground-to-satellite quantum teleportation. Nature, 549, 70(2017).

    [194] W. Pfaff et al. Unconditional quantum teleportation between distant solid-state quantum bits. Science, 345, 532(2014).

    [195] Y.-H. Luo et al. Quantum teleportation in high dimensions. Phys. Rev. Lett., 123, 070505(2019).

    [196] M. Yukawa, H. Benichi, A. Furusawa. High-fidelity continuous-variable quantum teleportation toward multistep quantum operations. Phys. Rev. A, 77, 022314(2008).

    [197] L. Vaidman. Teleportation of quantum states. Phys. Rev. A, 49, 1473(1994).

    [198] T. C. Ralph. All-optical quantum teleportation. Opt. Lett., 24, 348(1999).

    [199] S. Liu, Y. Lou, J. Jing. Orbital angular momentum multiplexed deterministic all-optical quantum teleportation. Nat. Commun., 11, 3875(2020).

    [200] S. Pirandola et al. Fundamental limits of repeaterless quantum communications. Nat. Commun., 8, 15043(2017).

    [201] Z.-S. Yuan et al. Experimental demonstration of a BDCZ quantum repeater node. Nature, 454, 1098(2008).

    [202] M. Żukowski et al. “Event-ready-detectors” Bell experiment via entanglement swapping. Phys. Rev. Lett., 71, 4287(1993).

    [203] J.-W. Pan et al. Experimental entanglement swapping: entangling photons that never interacted. Phys. Rev. Lett., 80, 3891(1998).

    [204] T. Jennewein et al. Experimental nonlocality proof of quantum teleportation and entanglement swapping. Phys. Rev. Lett., 88, 017903(2001).

    [205] X.-S. Ma et al. Experimental delayed-choice entanglement swapping. Nat. Phys., 8, 479(2012).

    [206] M. Halder et al. Entangling independent photons by time measurement. Nat. Phys., 3, 692(2007).

    [207] W. Ning et al. Deterministic entanglement swapping in a superconducting circuit. Phys. Rev. Lett., 123, 060502(2019).

    [208] R. E. S. Polkinghorne, T. C. Ralph. Continuous variable entanglement swapping. Phys. Rev. Lett., 83, 2095(1999).

    [209] S. M. Tan. Confirming entanglement in continuous variable quantum teleportation. Phys. Rev. A, 60, 2752(1999).

    [210] P. van Loock, S. L. Braunstein. Unconditional teleportation of continuous-variable entanglement. Phys. Rev. A, 61, 010302(R)(1999).

    [211] N. Takei et al. High-fidelity teleportation beyond the no-cloning limit and entanglement swapping for continuous variables. Phys. Rev. Lett., 94, 220502(2005).

    [212] S. Liu et al. All-optical entanglement swapping. Phys. Rev. Lett., 128, 060503(2022).

    [213] R. C. Pooser et al. Low-noise amplification of a continuous-variable quantum state. Phys. Rev. Lett., 103, 010501(2009).

    [214] W. K. Wooters, W. H. Zurek. A single quantum cannot be cloned. Nature, 299, 802(1982).

    [215] D. Dieks. Communication by EPR devices. Phys. Lett. A, 92, 271(1982).

    [216] V. Bužek, M. Hillery. Quantum copying: beyond the no-cloning theorem. Phys. Rev. A, 54, 1844(1996).

    [217] A. Lamas-Linares et al. Experimental quantum cloning of single photons. Science, 296, 712(2002).

    [218] W. T. M. Irvine et al. Optimal quantum cloning on a beam splitter. Phys. Rev. Lett., 92, 047902(2004).

    [219] S. Fasel et al. Quantum cloning with an optical fiber amplifier. Phys. Rev. Lett., 89, 107901(2002).

    [220] E. Nagali et al. Experimental optimal cloning of four-dimensional quantum states of photons. Phys. Rev. Lett., 105, 073602(2010).

    [221] E. Nagali et al. Optimal quantum cloning of orbital angular momentum photon qubits through Hong–Ou–Mandel coalescence. Nat. Photon., 3, 720(2009).

    [222] U. L. Andersen, V. Josse, G. Leuchs. Unconditional quantum cloning of coherent states with linear optics. Phys. Rev. Lett., 94, 240503(2005).

    [223] J. Y. Haw et al. Surpassing the no-cloning limit with a heralded hybrid linear amplifier for coherent states. Nat. Commun., 7, 13222(2016).

    [224] M. Sabuncu, U. L. Andersen, G. Leuchs. Experimental demonstration of continuous variable cloning with phase-conjugate inputs. Phys. Rev. Lett., 98, 170503(2007).

    [225] J. Fiurášek. Optical implementation of continuous-variable quantum cloning machines. Phys. Rev. Lett., 86, 4942(2001).

    [226] S. L. Braunstein et al. Optimal cloning of coherent states with a linear amplifier and beam splitters. Phys. Rev. Lett., 86, 4938(2001).

    [227] S. Liu et al. All-optical optimal N-to-M quantum cloning of coherent states. Phys. Rev. Lett., 126, 060503(2021).

    [228] H. J. Kimble. The quantum internet. Nature, 453, 1023(2008).

    [229] F. Bussières et al. Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory. Nat. Photon., 8, 775(2014).

    [230] S. Takeda, A. Furusawa. Toward large-scale fault-tolerant universal photonic quantum computing. APL Photonics, 4, 060902(2019).

    [231] K. Mattle et al. Dense coding in experimental quantum communication. Phys. Rev. Lett., 76, 4656(1996).

    [232] M. Hillery, V. Bužek, A. Berthiaume. Quantum secret sharing. Phys. Rev. A, 59, 1829(1999).

    [233] Y. Lou, S. Liu, J. Jing. Experimental demonstration of a multifunctional all-optical quantum state transfer machine. Phys. Rev. Lett., 126, 210507(2021).

    [234] S. L. Braunstein, H. J. Kimble. Dense coding for continuous variables. Phys. Rev. A, 61, 042302(2000).

    [235] J. Zhang, K. Peng. Quantum teleportation and dense coding by means of bright amplitude-squeezed light and direct measurement of a Bell state. Phys. Rev. A, 62, 064302(2000).

    [236] M. Ban. Quantum dense coding via a two-mode squeezed-vacuum state. J. Opt. B, 1, L9(1999).

    [237] T. C. Ralph, E. H. Huntington. Unconditional continuous-variable dense coding. Phys. Rev. A, 66, 042321(2002).

    [238] J. Mizuno et al. Experimental demonstration of entanglement-assisted coding using a two-mode squeezed vacuum state. Phys. Rev. A, 71, 012304(2005).

    [239] X. Hu et al. Beating the channel capacity limit for superdense coding with entangled ququarts. Sci. Adv., 4, eaat9304(2018).

    [240] S. Shi et al. Demonstration of channel multiplexing quantum communication exploiting entangled sideband modes. Phys. Rev. Lett., 125, 070502(2020).

    [241] Y. Chen et al. Orbital angular momentum multiplexed quantum dense coding. Phys. Rev. Lett., 127, 093601(2021).

    [242] V. Giovannetti, S. Lloyd, L. Maccone. Quantum metrology. Phys. Rev. Lett., 96, 010401(2006).

    [243] B. Yurke, S. L. McCall, J. R. Klauder. SU(2) and SU(1,1) interferometers. Phys. Rev. A, 33, 4033(1986).

    [244] G. Frascella et al. Wide-field SU(1,1) interferometer. Optica, 6, 1233(2019).

    [245] S. Lemieux et al. Engineering the frequency spectrum of bright squeezed vacuum via group velocity dispersion in an SU(1,1) interferometer. Phys. Rev. Lett., 117, 183601(2016).

    [246] P. R. Sharapova et al. Bright squeezed vacuum in a nonlinear interferometer: Frequency and temporal Schmidt-mode description. Phys. Rev. A, 97, 053827(2018).

    [247] A. A. Michelson, E. W. Morley. On the relative motion of the earth and the luminiferous ether. Am. J. Sci., s3-34, 333(1887).

    [248] S. L. Braunstein. Quantum limits on precision measurements of phase. Phys. Rev. Lett., 69, 3598(1992).

    [249] K. Goda et al. A quantum-enhanced prototype gravitational-wave detector. Nat. Phys., 4, 472(2008).

    [250] (for the, G. M. Harry. Advanced LIGO: the next generation of gravitational wave detectors. Class. Quantum Grav., 27, 084006(2010).

    [251] M. Xiao, L. A. Wu, H. J. Kimble. Precision measurement beyond the shot-noise limit. Phys. Rev. Lett., 59, 278(1987).

    [252] K. McKenzie et al. Experimental demonstration of a squeezing-enhanced power-recycled michelson interferometer for gravitational wave detection. Phys. Rev. Lett., 88, 231102(2002).

    [253] H. Vahlbruch et al. Demonstration of a squeezed-light-enhanced power- and signal-recycled michelson interferometer. Phys. Rev. Lett., 95, 211102(2005).

    [254] A. Kolkiran, G. S. Agarwal. Quantum interferometry using coherent beam stimulated parametric down-conversion. Opt. Express, 16, 6479(2008).

    [255] M. W. Mitchell, J. S. Lundeen, A. M. Steinberg. Super-resolving phase measurements with a multiphoton entangled state. Nature, 429, 161(2004).

    [256] J. P. Dowling. Quantum optical metrology—the lowdown on high-N00N states. Contemp. Phys., 49, 125(2008).

    [257] G. Y. Xiang et al. Entanglement-enhanced measurement of a completely unknown optical phase. Nat. Photon., 5, 43(2010).

    [258] A. Kuzmich, L. Mandel. Sub-shot-noise interferometric measurements with two-photon states. Quantum Semiclass. Opt., 10, 493(1998).

    [259] A. N. Boto et al. Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit. Phys. Rev. Lett., 85, 2733(2000).

    [260] P. M. Anisimov et al. Quantum metrology with two-mode squeezed vacuum: parity detection beats the Heisenberg limit. Phys. Rev. Lett., 104, 103602(2010).

    [261] A. Rivas, A. Luis. Precision quantum metrology and nonclassicality in linear and nonlinear detection schemes. Phys. Rev. Lett., 105, 010403(2010).

    [262] D. Li et al. Phase sensitivity at the Heisenberg limit in an SU(1,1) interferometer via parity detection. Phys. Rev. A, 94, 063840(2016).

    [263] B. E. Anderson et al. Optimal phase measurements with bright- and vacuum-seeded SU(1,1) interferometers. Phys. Rev. A, 95, 063843(2017).

    [264] S. S. Szigeti, R. J. Lewis-Swan, S. A. Haine. Pumped-up SU(1,1) interferometry. Phys. Rev. Lett., 118, 150401(2017).

    [265] M. Manceau et al. Detection loss tolerant supersensitive phase measurement with an SU(1,1) interferometer. Phys. Rev. Lett., 119, 223604(2017).

    [266] S. Liu et al. Quantum enhancement of phase sensitivity for the bright-seeded SU(1,1) interference with direct intensity detection. Phys. Rev. Appl., 10, 064046(2018).

    [267] Y. Shang et al. Continuous variable entanglement enhancement and manipulation by a subthreshold type II optical parametric amplifier. Opt. Lett., 35, 853(2010).

    [268] Z. Yan et al. Cascaded entanglement enhancement. Phys. Rev. A, 85, 040305(2012).

    [269] J. Xin, J. Qi, J. Jing. Enhancement of entanglement using cascaded four-wave mixing processes. Opt. Lett., 42, 366(2017).

    [270] S. S. Szigeti et al. Squeezed-light-enhanced atom interferometry below the standard quantum limit. Phys. Rev. A, 90, 063630(2014).

    [271] Z. Y. Ou. Enhancement of the phase-measurement sensitivity beyond the standard quantum limit by a nonlinear interferometer. Phys. Rev. A, 85, 023815(2012).

    [272] R. Schnabel et al. Quantum metrology for gravitational wave astronomy. Nat. Commun., 1, 121(2010).

    [273] J. Kong et al. Experimental investigation of the visibility dependence in a nonlinear interferometer using parametric amplifiers. Appl. Phys. Lett., 102, 011130(2013).

    [274] J. Kong et al. Cancellation of internal quantum noise of an amplifier by quantum correlation. Phys. Rev. Lett., 111, 033608(2013).

    [275] J. Xin, H. Wang, J. Jing. The effect of losses on the quantum-noise cancellation in the SU(1,1) interferometer. Appl. Phys. Lett., 109, 051107(2016).

    [276] T. Kim et al. Precision measurement scheme using a quantum interferometer. Phys. Rev. A, 72, 055801(2005).

    [277] J. Dunningham, T. Kim. Using quantum interferometers to make measurements at the Heisenberg limit. J. Mod. Opt., 53, 557(2006).

    [278] P. Gupta et al. Optimized phase sensing in a truncated SU(1,1) interferometer. Opt. Express, 26, 391(2018).

    [279] D. Rugar et al. Single spin detection by magnetic resonance force microscopy. Nature, 430, 329(2004).

    [280] J. Arlett, E. Myers, M. Roukes. Comparative advantages of mechanical biosensors. Nat. Nanotechnol., 6, 203(2011).

    [281] C. LeMieux et al. Polymeric nanolayers as actuators for ultrasensitive thermal bimorphs. Nano Lett., 6, 730(2006).

    [282] U. B. Hoff et al. Quantum-enhanced micromechanical displacement sensitivity. Opt. Lett., 38, 1413(2013).

    [283] C. A. Putman et al. A detailed analysis of the optical beam deflection technique for use in atomic force microscopy. Appl. Phys., 72, 6(1992).

    [284] D. Smith. Limits of force microscopy. Rev. Sci. Instrum., 66, 3191(1995).

    [285] S. Kawata, Y. Inouye, P. Verma. Plasmonics for near-field nano-imaging and superlensing. Nat. Photon., 3, 388(2009).

    [286] E. Ozbay. Plasmonics: merging photonics and electronics at nanoscale dimensions. Science, 311, 189(2006).

    [287] T. Ebbesen et al. Extraordinary optical transmission through sub-wavelength hole arrays. Nature, 391, 667(1998).

    [288] A. V. Zayats, I. I. Smolyaninov. Near-field photonics: surface plasmon polaritons and localized surface plasmons. J. Opt. A, 5, S16(2003).

    [289] C. Lee et al. Quantum plasmonics with a metal nanoparticle array. Phys. Rev. A, 85, 063823(2012).

    [290] D. Ballester et al. Long-range surface-plasmon-polariton excitation at the quantum level. Phys. Rev. A, 79, 053845(2009).

    [291] E. Altewischer, M. van Exter, J. Woerdman. Plasmon-assisted transmission of entangled photons. Nature, 418, 304(2002).

    [292] G.-Y. Chen et al. Surface plasmons in a metal nanowire coupled to colloidal quantum dots: scattering properties and quantum entanglement. Phys. Rev. B, 84, 045310(2011).

    [293] A. Huck et al. Demonstration of quadrature-squeezed surface plasmons in a gold waveguide. Phys. Rev. Lett., 102, 246802(2009).

    [294] Z. Jacob, V. Shalaev. Plasmonics goes quantum. Science, 334, 463(2011).

    [295] D. Wang et al. Feedback-optimized extraordinary optical transmission of continuous-variable entangled states. Phys. Rev. B, 91, 121406(2015).

    [296] R. Nichols et al. Multiparameter Gaussian quantum metrology. Phys. Rev. A, 98, 012114(2018).

    [297] L. Bao et al. Multi-channel quantum parameter estimation. Sci. China Inf. Sci., 65, 200505(2022).

    Kai Zhang, Shengshuai Liu, Yingxuan Chen, Xutong Wang, Jietai Jing. Optical quantum states based on hot atomic ensembles and their applications[J]. Photonics Insights, 2022, 1(2): R06
    Download Citation