• Acta Photonica Sinica
  • Vol. 51, Issue 8, 0851518 (2022)
Jiajun PENG1、1, Xiaohui LI1、1, Sunfan XI1、1, and Keqin JIAO1、1
Author Affiliations
  • 11School of Physics and Information Technology,Shaanxi Normal University,Xi'an 710119,China
  • 12College of Life Sciences,Shaanxi Normal University,Xi'an 710119,China
  • show less
    DOI: 10.3788/gzxb20225108.0851518 Cite this Article
    Jiajun PENG, Xiaohui LI, Sunfan XI, Keqin JIAO. Intelligent Ultrafast Photonics Based on Machine Learning:Review and Prospect(Invited)[J]. Acta Photonica Sinica, 2022, 51(8): 0851518 Copy Citation Text show less
    References

    [1] M I JORDAN, T M MITCHELL. Machine learning: trends, perspectives, and prospects. Science, 349, 255-260(2015).

    [2] D ZIBAR, H WYMEERSCH, I LYUBOMIRSKY. Machine learning under the spotlight. Nature Photonics, 11, 749-751(2017).

    [3] M KIM, C CHEN, P WANG et al. Detection of ovarian cancer via the spectral fingerprinting of quantum-defect-modified carbon nanotubes in serum by machine learning. Nature Biomedical Engineering, 6, 267-275(2022).

    [4] C GROJEAN, A PAUL, Z QIAN et al. Lessons on interpretable machine learning from particle physics. Nature Reviews Physics, 4, 284-286(2022).

    [5] J THIYAGALINGAM, M SHANKAR, G FOX et al. Scientific machine learning benchmarks. Nature Reviews Physics, 4, 413-420(2022).

    [6] Haitao LUAN, Xi CHEN, Qiming ZHANG等. Artificial intelligence nanophotonics: optical neural networksand nanophotonics. Acta Optica Sinica, 41, 0823005(2021).

    [7] W SIBBETT, A A LAGATSKY, C T A BROWN. Te development and application of femtosecond laser systems. Optics Express, 20, 6989-7001(2012).

    [8] J ZHOU, B HUANG, Z YAN et al. Emerging role of machine learning in light-matter interaction. Light: Science & Applications, 8, 84(2019).

    [9] K SUGIOKA, Y CHENG. Ultrafast lasers reliable tools for advanced materials processing. Light: Science & Applications, 3, e149(2014).

    [10] M E FERMANN, I HARTL. Ultrafast fibre lasers. Nature Photonics, 7, 868-874(2013).

    [11] Yikai SU, Yasha YI, Xingjun WANG. Special focus on photonics in AI. Scientia Sinica Informationis, 50, 935-936(2020).

    [12] E KUPRIKOV, A KOKHANOVSKIY, K SEREBRENNIKOV et al. Deep reinforcement learning for self-tuning laser source of dissipative solitons. Scientific Reports, 12, 7185(2022).

    [13] G A SANCHEZ, P MICAELLI, C OLIVIER et al. Accurate prediction of X-ray pulse properties from a free-electron laser using machine learning. Nature Communications, 8, 15461(2017).

    [14] R W KEYES. Optical logic-in the light of computer technology. Optica Acta: International Journal of Optics, 32, 525-535(1985).

    [15] J N KUTZ, S L BRUNTON. Intelligent systems for stabilizing mode-locked lasers and frequency combs: machine learning and equation-free control paradigms for self-tuning optics. Nanophotonics, 4, 459-471(2015).

    [16] Shaofu XU, Xiuting ZOU, Bowen MA et al. Deep-learning-powered photonic analog-to-digital conversion. Light: Science & Applications, 8, 66(2019).

    [17] D ZIBAR, M PIELS, R JONES et al. Machine learning techniques in optical communication. Journal of Lightwave Technology, 34, 1442-1452(2016).

    [18] W H KNOX. Ultrafast technology in telecommunications. IEEE Journal of Selected Topics in Quantum Electronics, 6, 1273-1278(2000).

    [19] P A MEROLLA, V A JOHN, A I RODRIGO et al. A million spiking-neuron integrated circuit with a scalable communication network and interface. Science, 345, 668-673(2014).

    [20] Qirui FAN, Gai ZHOU, Tao GUI et al. Advancing theoretical understanding and practical performance of signal processing for nonlinear optical communications through machine learning. Nature Communications, 11, 3694(2020).

    [21] D G L THEAN, H Y CHU, J H C FONG et al. Machine learning-coupled combinatorial mutagenesis enables resource-efficient engineering of CRISPR-Cas9 genome editor activities. Nature Communications, 13, 2219(2022).

    [22] C C NADELL, B HUANG, J M MALOF et al. Deep learning for accelerated all-dielectric metasurface design. Optics Express, 27, 27523-27535(2019).

    [23] I MALKIEL, M MICHAEL, N ACHIYA et al. Plasmonic nanostructure design and characterization via deep learning. Light: Science & Applications, 7, 60(2018).

    [24] R S HEGD. Deep learning: a new tool for photonic nanostructure design. Nanoscale Advances, 2, 1007-1023(2020).

    [25] C L CHEN, M ATA, C T LI et al. Deep learning in label-free cell classifcation. Scientific Reports, 6, 21471(2016).

    [26] A M PALMIERI, K EGOR, B FEDERICO et al. Experimental neural network enhanced quantum tomography. Quantum Information, 6, 20(2020).

    [27] O BAMISILE, D CAI, A OLUWASANMI et al. Comprehensive assessment, review, and comparison of AI models for solar irradiance prediction based on different time/estimation intervals. Scientific Reports, 12, 9644(2022).

    [28] W OUYANG, A ARISTOV, M LELEK et al. Deep learning massively accelerates super-resolution localization microscopy. Nature Biotechnology, 36, 460-468(2018).

    [29] A DURAND, T WIESNER, M A GARDNER et al. A machine learning approach for online automated optimization of super-resolution optical microscopy. Nature Communications, 9, 5247(2018).

    [30] A LUGNAN, A KATUMBAL, F LAPOORTE et al. Photonic neuromorphic information processing and reservoir computing. APL Photonics, 5, 020901(2020).

    [31] D BLUVSTEIN, H LEVINE, G SEMEGHINI et al. A quantum processor based on coherent transport of entangled atom arrays. Nature, 604, 451-456(2022).

    [32] Yang ZHAO, Penglai GUO, Xiaohui LI et al. Ultrafast photonics application of graphdiyne in optical communication region. Carbon, 149, 336-341(2019).

    [33] Jishu LIU, Xiaohui LI, Yixuan GUO et al. SnSe2 nanosheets for femtosecond harmonic mode-locked pulse generation. Small, 15, 1902811(2019).

    [34] V MATSAS, T NEWSON, M ZERVAS. Self-starting passively mode-locked fiber ring soliton laser exploiting nonlinear polarization rotation. Jelectronics Letters, 28, 1391-1393(1992).

    [35] P RYCZKOWSKI, M NARHI, C BILLET et al. Real-time full-feld characterization of transient dissipative soliton dynamics in a mode-locked laser. Nature Photonics, 12, 221-227(2018).

    [36] B WETZEL, K MICHAEL, R PIOTR et al. Customizing supercontinuum generation via on-chip adaptive temporal pulse-splitting. Nature Communications, 9, 4884(2018).

    [37] Chaohan CUI, Liang ZHANG, Linran FAN. In situ control of effective Kerr nonlinearity with Pockels integrated photonics. Nature Physics, 18, 497-501(2022).

    [38] Yusheng LIANG, Zhimin ZHU, Shuqian QIAO et al. Migrating photon avalanche in different emitters at the nanoscale enables 46th-order optical nonlinearity. Nature Nanotechnology, 17, 524-530(2022).

    [39] Yuxiang TANG, Yanbin ZHANG, Qirui LIU et al. Interacting plexcitons for designed ultrafast optical nonlinearity in a monolayer semiconductor. Light: Science & Applications, 11, 94(2022).

    [40] C HUANG, S FUJISAWA, L T F DE et al. A silicon photonic-electronic neural network for fibre nonlinearity compensation. Nature Electronics, 4, 837-844(2021).

    [41] Guixin LI, Shumei CHEN, N PHOLCHAI et al. Continuous control of the nonlinearity phase for harmonic generations. Nature Materials, 14, 607-612(2015).

    [42] K WANG, M SEIDEL, K NAGARAJAN et al. Large optical nonlinearity enhancement under electronic strong coupling. Nature Communications, 12, 1486(2021).

    [43] Yonggang ZUO, Wentao YU, Can LIU et al. Optical fibres with embedded two-dimensional materials for ultrahigh nonlinearity. Nature Nanotechnology, 15, 987-991(2020).

    [44] A KOKHANOVSKIY, A IVANENKO, S KOBTSEV et al. Machine learning methods for control of fibre lasers with double gain nonlinear loop mirror. Scientific Reports, 9, 2916(2019).

    [45] D EELTINK, H BRANGER, C LUNEAU et al. Nonlinear wave evolution with data-driven breaking. Nature Communications, 13, 2343(2022).

    [46] T ZAHAVY, D ALEX, M DANIEL et al. Deep learning reconstruction of ultrashort pulses. Optica, 5, 666-673(2018).

    [47] M OLIVIER, M D GAGNON, M PICHE. Automated mode locking in nonlinear polarization rotation fiber lasers by detection of a discontinuous jump in the polarization state. Optics Express, 23, 6738-6746(2015).

    [48] G GENTY, L SALMELA, J M DUDLEY et al. Machine learning and applications in ultrafast photonics. Nature Photonics, 15, 91-101(2021).

    [49] Lilin YI, Li ZHANG, Guoqing PU. Research progress of automatic mode-locking fiber laser. ZTE Communications, 2, 200240(2020).

    [50] T HELLWIG, T WALBAUM, P GROSS et al. Automated characterization and alignment of passively mode-locked fiber lasers based on nonlinear polarization rotation. Applied Physics B, 101, 565-570(2010).

    [51] Xuling SHEN, Wenxue LI, Minget al YAN. Electronic control of nonlinear-polarization-rotation mode locking in Yb-doped fiber lasers. Optics Letters, 37, 3426-3428(2012).

    [52] Sha LI, Jun XU, Guoliang CHEN et al. An automatic mode-locked system for passively mode-locked fiber laser, 9043(2013).

    [53] Bo YI, Wen JIA, Jun XU et al. Automatic mode lock circuit used in NPR passive mode locked fiber laser. Optics and Precision Engineering, 21, 2994-3000(2014).

    [54] U ANDRAL, R S FODIL, F AMRANI et al. Fiber laser mode locked through an evolutionary algorithm. Optica, 2, 275-278(2015).

    [55] Xuling SHEN, Qiang HAO, Heping ZENG. Self-tuning mode-locked fiber lasers based on prior collection of polarization settings. IEEE Photonics Technology Letters, 29, 1719-1722(2017).

    [56] Guoqing PU, Lilin YI, Li ZHANG et al. Programmable and fast-switchable passively harmonic mode-locking fiber laser, W2A.9(2018).

    [57] R I WOODWARD, E J R KELLEHER. Towards 'smart lasers': self-optimisation of an ultrafast pulse source using a genetic algorithm. Scientific Reports, 6, 37616(2016).

    [58] D G WINTERS, M S KIRCHNER, S J BACKUS et al. Electronic initiation and optimization of nonlinear polarization evolution mode-locking in a fiber laser. Optics Express, 25, 33216-33225(2017).

    [59] M RAISSI, P PERDIKARIS, G E KARNIADAKIS. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial diferential equations. Journal of Computational Physics, 378, 686-707(2019).

    [60] C MENG, P C V THRANE, F DING et al. Full-range birefringence control with piezoelectric MEMS-based metasurfaces. Nature Communications, 13, 2071(2022).

    [61] X FU, S L BRUNTON, J N KUTZ. Classifcation of birefringence in mode-locked fiber lasers using machine learning and sparse representation. Optics Express, 22, 8585-8597(2014).

    [62] Guoqing PU, Lilin YI, Li ZHANG et al. Intelligent programmable mode-locked fiber laser with a human-like algorithm. Optica, 6, 362-369(2019).

    [63] Guoqing PU, Lilin YI, Li ZHANG et al. Genetic algorithm-based fast real-time automatic mode-locked fiber laser. IEEE Photonics Technology Letters, 32, 7-10(2020).

    [64] Xiuqi WU, Junsong PENG, S BOSCOLO et al. Intelligent breathing soliton generation in ultrafast fiber lasers. Laser Photonics Reviews, 16, 2100191(2021).

    [65] T ZAHAVY, A DIKOPOLTSEV, D MOSS et al. Deep learning reconstruction of ultrashort pulses. Optica, 5, 666-673(2018).

    [66] S L BRUNTON, J L PROCTOR, J N KUTZ. Discovering governing equations from data by sparse identifcation of nonlinear dynamical systems. Proceedings of the national academy of sciences of the united states of america, 113, 3932-3937(2016).

    [67] L SALMELA, N TSIPINAKIS, A FOI et al. Predicting ultrafast nonlinear dynamics in fbre optics with a recurrent neural network. Nature Machine Intelligence, 3, 344-354(2021).

    [68] I GOODFELLOW, Y BENGIO, A COURVILLE. Deep Learning(2016).

    [69] Y LECUN, Y BENGIO, G HINTON. Deep learning. Nature, 521, 436-444(2015).

    [70] P R PRUCNAL, B J SHASTRI. Neuromorphic Photonics. CRC(2017).

    [71] D L T FERREIRA, Hsuan Tung PENG, A N TAIT et al. Machine learning with neuromorphic photonics. Journal Of Lightwave Technology, 37, 1515-1534(2019).

    [72] Chaoran HUANG, S FUJISAWA, T F LIMA et al. Demonstration of photonic neural network for fiber nonlinearity compensation in long-haul transmission systems(2020).

    [73] V BANGARI, B A MARQUEZ, H MILLER et al. Digital electronics and analog photonics for convolutional neural networks (DEAP-CNNs). IEEE Journal of Selected Topics in Quantum Electronics, 26, 7701213(2020).

    [74] A MEHRABIAN, M MISCUGLIO, Y AIKABANI et al. A Winograd-based integrated photonics accelerator for convolutional neural networks. IEEE Journal of Selected Topics in Quantum Electronics, 26, 6100312(2020).

    [75] Qiuquan YAN, Qinghui DENG, Jun ZHANG et al. Low-latency deep-reinforcement learning algorithm for ultrafast fiber lasers. Photonics Research, 9, 8, 1493(2021).

    [76] T BAUMEISTER, S L BRUNTON, J N KUTZ. Deep learning and model predictive control for self-tuning mode-locked lasers. Journal of the Optical Society of America B, 35, 617-626(2018).

    [77] N WALKER, K M TAM, M JARRELL. Deep learning on the 2-dimensional Ising model to extract the crossover region with a variational autoencoder. Scientific Reports, 10, 13047(2020).

    [78] L TERNES, M DANE, S GROSS et al. A multi-encoder variational autoencoder controls multiple transformational features in single-cell image analysis. Communications Biology, 5, 255(2022).

    [79] H LI, Y GUAN. Asymmetric predictive relationships across histone modifications. Nature Machine Intelligence, 4, 288-299(2022).

    [80] C E GARCIA, D M PRETT, M MORARI. Model predictive control: theory and practice-a survey. Automatica, 25, 335-348(1989).

    [81] P ALVARO, H MARCO, M OSWALDO. Intelligent Swing-Up and Robust Stabilization via Tube-based Nonlinear Model Predictive Control for A Rotational Inverted-Pendulum System. Revista Politécnica, 45, 49-64(2020).

    [82] J ROBERTSON, M HEJDA, J BUENO et al. Ultrafast optical integration and pattern classifcation for neuromorphic photonics based on spiking VCSEL neurons. Scientific Reports, 10, 6098(2020).

    [83] L LARGER, M C SORIANO, D BRUNNER et al. Photonic information processing beyond Turing: an optoelectronic implementation of reservoir computing. Optics Express, 20, 3241-3249(2012).

    [84] H PENG, G ANGELATOS, T F LIMA et al. Temporal information processing with an integrated laser neuron. IEEE Journal of Selected Topics in Quantum Electronics, 26, 5100209(2020).

    [85] K VANDOORNE, P MECHET, T V VAERENBERGH et al. Experimental demonstration of reservoir computing on a silicon photonics chip. Nature Communications, 5, 3541(2014).

    [86] K BERGGREN, Qiangfei XIA, K K LIKHAREV et al. Roadmap on emerging hardware and technology for machine learning. Nanotechnology, 32, 012002(2021).

    [87] H KIM, R BOSE, T SHEN. A quantum logic gate between a solid-state quantum bit and a photon. Nature Photonics, 7, 373-377(2013).

    [88] J CHOI, C LEE, C LEE et al. Vertically stacked, low-voltage organic ternary logic circuits including nonvolatile floating-gate memory transistors. Nature Communications, 13, 2305(2022).

    [89] F CHONG, D FRANKLIN, M MARTONOSI. Programming languages and compiler design for realistic quantum hardware. Nature, 549, 180-187(2017).

    [90] Lixia MA, Xing LEI, Jieli YAN et al. High-performance cavity-enhanced quantum memory with warm atomic cell. Nature Communications, 13, 2368(2022).

    [91] Shuyun ZHUO, Cheng SONG, Qinfeng RONG et al. Shape and stiffness memory ionogels with programmable pressure-resistance response. Nature Communications, 13, 1743(2022).

    [92] S AMBROGIO, P NARAYANAN, H TSAI et al. Equivalent-accuracy accelerated neural-network training using analogue memory. Nature, 558, 60-67(2018).

    [93] J M HUNG, C X XUE, H Y KAO et al. A four-megabit compute-in-memory macro with eight-bit precision based on CMOS and resistive random-access memory for AI edge devices. Nature Electronics, 4, 921-930(2021).

    [94] N C HARRIS, C JACQUES, B DARIUS et al. Linear programmable nanophotonic processors. Optica, 5, 1623-1631(2018).

    [95] D PEREZ, I GASULLA, P D MAHAPATRA et al. Principles, fundamentals, and applications of programmable integrated photonics. Advances in Optics and Photonics, 12, 709-786(2020).

    [96] J MENG, M MISCUGLIO, J K GEORGE et al. Electronic bottleneck suppression in next-generation networks with integrated photonic digital-to-analog converters. Advanced Photonics Research, 2, 2000033(2021).

    [97] K POWELL, L LI, A SHAMS-ANSARI et al. Integrated silicon carbide electro-optic modulator. Nature Communications, 13, 1851(2022).

    [98] Zhongjin LIN, Yanmei LIN, Hao LI et al. High-performance polarization management devices based on thin-film lithium niobate. Light: Science & Applications, 11, 93(2022).

    [99] E H TURNER. High-frequency electro-optic coefcients of lithium niobate. Applied Physics Letters, 8, 303-304(1966).

    [100] Cheng WANG, Mian ZHANG, Xi CHEN et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature, 562, 101-104(2018).

    [101] F POP, B HERRERA, M RINALDI. Lithium Niobate Piezoelectric Micromachined Ultrasonic Transducers for high data-rate intrabody communication. Nature Communications, 13, 1782(2022).

    [102] Mengyue XU, Mingbo HE, Hongguang ZHANG et al. High-performance coherent optical modulators based on thin-film lithium niobate platform. Nature Communications, 11, 3911(2020).

    [103] Zuoren XIONG, Xinyan MA, Yanbo PEI et al. Surface plasmon induced spot and line formation at interfaces of ITO coated LiNbO3 slabs and gigantic nonlinearity. Scientific Reports, 11, 19790(2021).

    [104] A KOKHANOVSKIY, A BEDNYAKOVA, E KUPRIKOV et al. Machine learning-based pulse characterization in fgure-eight mode-locked lasers. Optics Letters, 44, 3410-3413(2019).

    [105] Guoqing PU, Lilin YI, Li ZHANG et al. Intelligent control of mode-locked femtosecond pulses by time-stretch-assisted real-time spectral analysis. Light: Science & Applications, 9, 13(2020).

    [106] T C BRILES, D C YOST, A CINGOZ et al. Simple piezoelectric-actuated mirror with 180 kHz servo bandwidth. Optics Express, 18, 9739-9746(2010).

    [107] Xiaohui LI, Jiajun PENG, Ruisheng LIU et al. Fe3O4 nanoparticle-enabled mode-locking in an erbium-doped fiber laser. Frontiers of Optoelectronics, 13, 149-155(2020).

    [108] B J SHASTRI, M A NAHMIAS, A N TAIT et al. Spike processing with a graphene excitable laser. Scientific Reports, 6, 19126(2016).

    [109] Xiaohui LI, Yixuan GUO, Yujie REN et al. Narrow-bandgap materials for optoelectronics applications. Frontiers of Physics, 17, 13304(2022).

    [110] D D HUDSON, K W HOLMAN, R J JONES et al. Mode-locked fiber laser frequency-controlled with an intracavity electro-optic modulator. Optics Letters, 30, 2948-2950(2005).

    [111] L LARGER, M C SORIANO, D BRUNNER et al. Photonic information processing beyond Turing: an optoelectronic implementation of reservoir computing. Optics Express, 20, 3241-3249(2012).

    [112] K VANDOORNE, P MECHET, T V VAERENBERGH et al. Experimental demonstration of reservoir computing on a silicon photonics chip. Nature Communications, 5, 3541(2014).

    [113] D BRUNNER, M C SORIANO, G. V DER SANDE. Photonic reservoir computing. De Gruyter(2019).

    [114] J MENG, M MISCUGLIO, J K GEORGE et al. Electronic bottleneck suppression in next-generation networks with integrated photonic digital-to-analog converters. Advanced Photonics Research, 2, 2000033(2021).

    [115] S BUCKLEY, J CHILES, A N MCCAUGHAN et al. All-silicon light-emitting diodes waveguide-integrated with superconducting single-photon detectors. Applied Physics Letters, 111, 141101(2017).

    [116] J M DUDLEY, G GENTY, A MUSSOT et al. Rogue waves and analogies in optics and oceanography. Nature Reviews Physics, 1, 675-689(2019).

    [117] D KWON, D JEONG, I JEON et al. Ultrastable microwave and soliton-pulse generation from fibre-photonic-stabilized microcombs. Nature Communications, 13, 381(2022).

    [118] Mengjie YU, Ke JANG, Y OKAWACHI et al. Breather soliton dynamics in microresonators. Nature Communications, 8, 14569(2017).

    [119] Fanchao MENG, C LAPRE, C BILLET et al. Intracavity incoherent supercontinuum dynamics and rogue waves in a broadband dissipative soliton laser. Nature Communications, 12, 5567(2021).

    [120] S L BRUNTON, X FU, J N KUTZ. Self-tuning fiber lasers. IEEE Journal of Selected Topics in Quantum Electronics, 20, 464-471(2014).

    [121] S L BRUNTON, X FU, J N KUTZ. Extremum-seeking control of a mode-locked laser. IEEE Journal of Selected Topics in Quantum Electronics, 49, 852-861(2013).

    [122] U ANDRAL, J BUGUET, R S FODIL et al. Toward an autosetting mode-locked fiber laser cavity. Journal of The Optical Society of America B-optical Physics, 33, 825-833(2016).

    [123] R WOODWARD, E KELLEHER. Genetic algorithm-based control of birefringent fltering for self-tuning, self-pulsing fiber lasers. Optics Letters, 42, 2952-2955(2017).

    [124] D G WINTERS, M S KIRCHNER, S J BACKUS et al. Electronic initiation and optimization of nonlinear polarization evolution mode-locking in a fiber laser. Optics Express, 25, 33216-33225(2017).

    [125] X FU, N J KUTZ. High-energy mode-locked fiber lasers using multiple transmission filters and a genetic algorithm. Optics Express, 21, 6526-6537(2013).

    [126] M RYSER, C BACHER, C LATT et al. Self-optimizing additive pulse mode-locked fiber laser: wavelength tuning and selective operation in continuous-wave or mode-locked regime. Fiber Lasers XV: Technology Systems, 10512, 1(2018).

    [127] Hsiaohua WU, Pinhan HUANG, YuanHe TENG et al. Automatic generation of noise-like or mode-locked pulses in an Ytterbiumdoped fiber laser by using two-photon-induced current for feedback. IEEE Photonics Journal, 10, 1-8(2018).

    [128] D RADNATAROV, S KHRIPUNOV, S KOBTSEV et al. Automatic electronic-controlled mode locking self-start in fiber lasers with non-linear polarization evolution. Optics Express, 21, 20626-20631(2013).

    [129] Wei MA, Zhaocheng LIU, Z A KUDYSHEV et al. Deep learning for the design of photonic structures. Nature Photonics, 15, 77-90(2021).

    [130] B J SHASTRI, A N TAIT, T FERREIRA et al. Photonics for artificial intelligence and neuromorphic computing. Nature Photonics, 15, 102-114(2021).

    Jiajun PENG, Xiaohui LI, Sunfan XI, Keqin JIAO. Intelligent Ultrafast Photonics Based on Machine Learning:Review and Prospect(Invited)[J]. Acta Photonica Sinica, 2022, 51(8): 0851518
    Download Citation