• Photonics Insights
  • Vol. 3, Issue 4, R09 (2024)
Haowen Shu1,2,†,*, Bitao Shen1, Huajin Chang1..., Junhao Han1, Jiong Xiao3 and Xingjun Wang1,2,3,4,5,*|Show fewer author(s)
Author Affiliations
  • 1State Key Laboratory of Advanced Optical Communications System and Networks, School of Electronics, Peking University, Beijing, China
  • 2Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing, China
  • 3Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, China
  • 4Peking University Yangtze Delta Institute of Optoelectronics, Nantong, China
  • 5Peng Cheng Laboratory, Shenzhen, China
  • show less
    DOI: 10.3788/PI.2024.R09 Cite this Article Set citation alerts
    Haowen Shu, Bitao Shen, Huajin Chang, Junhao Han, Jiong Xiao, Xingjun Wang, "Microcomb technology: from principles to applications," Photon. Insights 3, R09 (2024) Copy Citation Text show less
    References

    [1] T. Fortier, E. Baumann. 20 years of developments in optical frequency comb technology and applications. Commun. Phys., 2, 153(2019).

    [2] F. R. Giorgetta et al. Optical two-way time and frequency transfer over free space. Nat. Photonics, 7, 434(2013).

    [3] T. M. Fortier et al. Carrier-envelope phase-controlled quantum interference of injected photocurrents in semiconductors. Phys. Rev. Lett., 92, 147403(2004).

    [4] T. Rosenband et al. Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place. Science, 319, 1808(2008).

    [5] S. A. Diddams, L. Hollberg, V. Mbele. Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb. Nature, 445, 627(2007).

    [6] M. T. Murphy et al. High-precision wavelength calibration of astronomical spectrographs with laser frequency combs. Mon. Not. R. Astron. Soc., 380, 839(2007).

    [7] K. J. Vahala. Optical microcavities. Nature, 424, 839(2003).

    [8] T. Kippenberg, S. Spillane, K. Vahala. Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity. Phys. Rev. Lett., 93, 083904(2004).

    [9] T. J. Kippenberg et al. Dissipative Kerr solitons in optical microresonators. Science, 361, eaan8083(2018).

    [10] Y. K. Chembo, C. R. Menyuk. Spatiotemporal Lugiato-Lefever formalism for Kerr-comb generation in whispering-gallery-mode resonators. Phys. Rev. A, 87, 053852(2013).

    [11] T. Herr et al. Temporal solitons in optical microresonators. Nat. Photonics, 8, 145(2014).

    [12] M. W. Puckett et al. 422 million intrinsic quality factor planar integrated all-waveguide resonator with sub-MHz linewidth. Nat. Commun., 12, 934(2021).

    [13] D. K. Armani et al. Ultra-high-Q toroid microcavity on a chip. Nature, 421, 925(2003).

    [14] I. S. Grudinin, L. Baumgartel, N. Yu. Frequency comb from a microresonator with engineered spectrum. Opt. Express, 20, 6604(2012).

    [15] M. Ferrera et al. Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures. Nat. Photonics, 2, 737(2008).

    [16] A. C. Turner et al. Ultra-low power parametric frequency conversion in a silicon microring resonator. Opt. Express, 16, 4881(2008).

    [17] J. S. Levy et al. CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects. Nat. Photonics, 4, 37(2010).

    [18] H. Jung et al. Optical frequency comb generation from aluminum nitride microring resonator. Opt. Lett., 38, 2810(2013).

    [19] B. J. M. Hausmann et al. Diamond nonlinear photonics. Nat. Photonics, 8, 369(2014).

    [20] C.-L. Wu et al. Low-loss and high-Q Ta2O5 based micro-ring resonator with inverse taper structure. Opt. Express, 23, 26268(2015).

    [21] M. Pu et al. Efficient frequency comb generation in AlGaAs-on-insulator. Optica, 3, 823(2016).

    [22] Q. Du et al. Low-loss photonic device in Ge-Sb-S chalcogenide glass. Opt. Lett., 41, 3090(2016).

    [23] M. Zhang et al. Monolithic ultra-high-Q lithium niobate microring resonator. Optica, 4, 1536(2017).

    [24] D. J. Wilson et al. Integrated gallium phosphide nonlinear photonics. Nat. Photonics, 14, 57(2020).

    [25] M. A. Guidry et al. Optical parametric oscillation in silicon carbide nanophotonics. Optica, 7, 1139(2020).

    [26] C. Wang et al. Lithium tantalate photonic integrated circuits for volume manufacturing. Nature, 629, 784(2024).

    [27] X. Xue et al. Mode-locked dark pulse Kerr combs in normal-dispersion microresonators. Nat. Photonics, 9, 594(2015).

    [28] M. Yu et al. Breather soliton dynamics in microresonators. Nat. Commun., 8, 14569(2017).

    [29] D. C. Cole et al. Soliton crystals in Kerr resonators. Nat. Photonics, 11, 671(2017).

    [30] W. Weng et al. Heteronuclear soliton molecules in optical microresonators. Nat. Commun., 11, 2402(2020).

    [31] Q.-F. Yang et al. Stokes solitons in optical microcavities. Nat. Phys., 13, 53(2017).

    [32] Y. Bai et al. Brillouin-Kerr soliton frequency combs in an optical microresonator. Phys. Rev. Lett., 126, 063901(2021).

    [33] H. Bao et al. Laser cavity-soliton microcombs. Nat. Photonics, 13, 384(2019).

    [34] Z. L. Newman et al. Architecture for the photonic integration of an optical atomic clock. Optica, 6, 680(2019).

    [35] P. Trocha et al. Ultrafast optical ranging using microresonator soliton frequency combs. Science, 359, 887(2018).

    [36] M.-G. Suh et al. Microresonator soliton dual-comb spectroscopy. Science, 354, 600(2016).

    [37] J. Pfeifle et al. Coherent terabit communications with microresonator Kerr frequency combs. Nat. Photonics, 8, 375(2014).

    [38] J. Riemensberger et al. Massively parallel coherent laser ranging using a soliton microcomb. Nature, 581, 164(2020).

    [39] J. Feldmann et al. Parallel convolutional processing using an integrated photonic tensor core. Nature, 589, 52(2021).

    [40] B. Shen et al. Harnessing microcomb-based parallel chaos for random number generation and optical decision making. Nat. Commun., 14, 4590(2023).

    [41] H. Shu et al. Microcomb-driven silicon photonic systems. Nature, 605, 457(2022).

    [42] S. B. Papp et al. Microresonator frequency comb optical clock. Optica, 1, 10(2014).

    [43] X. Xue et al. Programmable single-bandpass photonic RF filter based on Kerr comb from a microring. J. Lightwave Technol., 32, 3557(2014).

    [44] W. Liang et al. High spectral purity Kerr frequency comb radio frequency photonic oscillator. Nat. Commun., 6, 7957(2015).

    [45] P. Del’Haye et al. Phase-coherent microwave-to-optical link with a self-referenced microcomb. Nat. Photonics, 10, 516(2016).

    [46] D. T. Spencer et al. An optical-frequency synthesizer using integrated photonics. Nature, 557, 81(2018).

    [47] M.-G. Suh et al. Searching for exoplanets using a microresonator astrocomb. Nat. Photonics, 13, 25(2019).

    [48] X. Ji et al. Chip-based frequency comb sources for optical coherence tomography. Opt. Express, 27, 19896(2019).

    [49] J. Riemensberger et al. Massively parallel coherent laser ranging using a soliton microcomb. Nature, 581, 164(2020).

    [50] C. Bao et al. Architecture for microcomb-based GHz-mid-infrared dual-comb spectroscopy. Nat. Commun., 12, 6573(2021).

    [51] X. Xu et al. 11 TOPS photonic convolutional accelerator for optical neural networks. Nature, 589, 44(2021).

    [52] W. Shao et al. Terabit FSO communication based on a soliton microcomb. Photonics Res., 10, 2802(2022).

    [53] H. Shu et al. Microcomb-driven silicon photonic systems. Nature, 605, 457(2022).

    [54] R. Chen et al. Breaking the temporal and frequency congestion of LiDAR by parallel chaos. Nat. Photonics, 17, 306(2023).

    [55] B. Shen et al. Harnessing microcomb-based parallel chaos for random number generation and optical decision making. Nat. Commun., 14, 4592(2023).

    [56] X. Zhang et al. High-coherence parallelization in integrated photonics. Nat. Commun., 15, 7892(2024).

    [57] P. Del’Haye et al. Octave spanning tunable frequency comb from a microresonator. Phys. Rev. Lett., 107, 063901(2011).

    [58] Y. Liu et al. Investigation of mode coupling in normal-dispersion silicon nitride microresonators for Kerr frequency comb generation. Optica, 1, 137(2014).

    [59] X. Xue et al. Normal-dispersion microcombs enabled by controllable mode interactions. Laser Photonics Rev., 9, L23(2015).

    [60] B. Y. Kim et al. Turn-key, high-efficiency Kerr comb source. Opt. Lett., 44, 4475(2019).

    [61] S. Kim et al. Dispersion engineering and frequency comb generation in thin silicon nitride concentric microresonators. Nat. Commun., 8, 372(2017).

    [62] B. Stern et al. Battery-operated integrated frequency comb generator. Nature, 562, 401(2018).

    [63] X. Xue, X. Zheng, B. Zhou. Super-efficient temporal solitons in mutually coupled optical cavities. Nat. Photonics, 13, 616(2019).

    [64] Y. Li et al. Real-time transition dynamics and stability of chip-scale dispersion-managed frequency microcombs. Light Sci. Appl., 9, 52(2020).

    [65] S.-P. Yu et al. Spontaneous pulse formation in edgeless photonic crystal resonators. Nat. Photonics, 15, 461(2021).

    [66] J. Li et al. The efficiency of pulse pumped soliton microcombs. Optica, 9, 231(2022).

    [67] O. B. Helgason et al. Surpassing the nonlinear conversion efficiency of soliton microcombs. Nat. Photonics, 17, 992(2023).

    [68] Q.-X. Ji et al. Multimodality integrated microresonators using the moiré speedup effect. Science, 383, 1080(2024).

    [69] E. Lucas et al. Tailoring microcombs with inverse-designed, meta-dispersion microresonators. Nat. Photonics, 17, 943(2023).

    [70] P. Del’Haye et al. Optical frequency comb generation from a monolithic microresonator. Nature, 450, 1214(2007).

    [71] T. Herr et al. Universal formation dynamics and noise of Kerr-frequency combs in microresonators. Nat. Photonics, 6, 480(2012).

    [72] X. Xue et al. Mode-locked dark pulse Kerr combs in normal-dispersion microresonators. Nat. Photonics, 9, 594(2015).

    [73] V. Brasch et al. Photonic chip-based optical frequency comb using soliton Cherenkov radiation. Science, 351, 357(2016).

    [74] X. Yi et al. Single-mode dispersive waves and soliton microcomb dynamics. Nat. Commun., 8, 14869(2017).

    [75] J. K. Jang et al. Synchronization of coupled optical microresonators. Nat. Photonics, 12, 688(2018).

    [76] H. Bao et al. Laser cavity-soliton microcombs. Nat. Photonics, 13, 384(2019).

    [77] B. Shen et al. Integrated turnkey soliton microcombs. Nature, 582, 365(2020).

    [78] O. B. Helgason et al. Dissipative solitons in photonic molecules. Nat. Photonics, 15, 305(2021).

    [79] M. A. Guidry et al. Quantum optics of soliton microcombs. Nat. Photonics, 16, 52(2022).

    [80] G. Moille et al. Kerr-induced synchronization of a cavity soliton to an optical reference. Nature, 624, 267(2023).

    [81] J. Ling et al. Electrically empowered microcomb laser. Nat. Commun., 15, 4192(2024).

    [82] D. K. Armani et al. Ultra-high-Q toroid microcavity on a chip. Nature, 421, 925(2003).

    [83] M. H. P. Pfeiffer et al. Ultra-smooth silicon nitride waveguides based on the Damascene reflow process: fabrication and loss origins. Optica, 5, 884(2018).

    [84] D. J. Wilson et al. Integrated gallium phosphide nonlinear photonics. Nat. Photonics, 14, 57(2020).

    [85] M. W. Puckett et al. 422 Million intrinsic quality factor planar integrated all-waveguide resonator with sub-MHz linewidth. Nat. Commun., 12, 934(2021).

    [86] C. Xiang et al. Laser soliton microcombs heterogeneously integrated on silicon. Science, 373, 99(2021).

    [87] Z. Ye et al. Foundry manufacturing of tight-confinement, dispersion-engineered, ultralow-loss silicon nitride photonic integrated circuits. Photonics Res., 11, 558(2023).

    [88] C. Wang et al. Lithium tantalate photonic integrated circuits for volume manufacturing. Nature, 629, 784(2024).

    [89] T. J. Kippenberg, R. Holzwarth, S. A. Diddams. Microresonator-based optical frequency combs. Science, 332, 555(2011).

    [90] S. A. Diddams, K. Vahala, T. Udem. Optical frequency combs: coherently uniting the electromagnetic spectrum. Science, 369, eaay3676(2020).

    [91] G. P. Agrawal. Nonlinear Science at the Dawn of the 21st Century 195-211(2000).

    [92] A. L. Gaeta, M. Lipson, T. J. Kippenberg. Photonic-chip-based frequency combs. Nat. Photonics, 13, 158(2019).

    [93] M. Haelterman, S. Trillo, S. Wabnitz. Dissipative modulation instability in a nonlinear dispersive ring cavity. Opt. Commun., 91, 401(1992).

    [94] T. Hansson, D. Modotto, S. Wabnitz. Dynamics of the modulational instability in microresonator frequency combs. Phys. Rev. A, 88, 023819(2013).

    [95] M. Anderson et al. Observations of spatiotemporal instabilities of temporal cavity solitons. Optica, 3, 1071(2016).

    [96] T. Herr, M. L. Gorodetsky, T. J. Kippenberg. Dissipative Kerr solitons in optical microresonators. Nonlinear optical cavity dynamics: from microresonators to fiber lasers, 129(2016).

    [97] C. Bao et al. Observation of Fermi-Pasta-Ulam recurrence induced by breather solitons in an optical microresonator. Phys. Rev. Lett., 117, 163901(2016).

    [98] H. Guo et al. Intermode breather solitons in optical microresonators. Phys. Rev. X, 7, 041055(2017).

    [99] E. Lucas et al. Breathing dissipative solitons in optical microresonators. Nat. Commun., 8, 736(2017).

    [100] M. Yu et al. Breather soliton dynamics in microresonators. Nat. Commun., 8, 14569(2017).

    [101] C. Bao et al. Observation of breathing dark pulses in normal dispersion optical microresonators. Phys. Rev. Lett., 121, 257401(2018).

    [102] D. C. Cole et al. Soliton crystals in Kerr resonators. Nat. Photonics, 11, 671(2017).

    [103] B. C. Yao et al. Gate-tunable frequency combs in graphene-nitride microresonators. Nature, 558, 410(2018).

    [104] Y. He et al. Self-starting bi-chromatic LiNbO3 soliton microcomb. Optica, 6, 1138(2019).

    [105] M. Karpov et al. Dynamics of soliton crystals in optical microresonators. Nat. Phys., 15, 1071(2019).

    [106] Y. He et al. Perfect soliton crystals on demand. Laser Photonics Rev., 14, 1900339(2020).

    [107] Z. Z. Lu et al. Synthesized soliton crystals. Nat. Commun., 12, 3179(2021).

    [108] W. Weng et al. Heteronuclear soliton molecules in optical microresonators. Nat. Commun., 11, 2402(2020).

    [109] M. Zhang et al. Strong interactions between solitons and background light in Brillouin-Kerr microcombs. Nat. Commun., 15, 1661(2024).

    [110] M. Rowley et al. Self-emergence of robust solitons in a microcavity. Nature, 608, 303(2022).

    [111] Y. K. Chembo, N. Yu. Modal expansion approach to optical-frequency-comb generation with monolithic whispering-gallery-mode resonators. Phys. Rev. A, 82, 033801(2010).

    [112] F. Leo et al. Dynamics of one-dimensional Kerr cavity solitons. Opt. Express, 21, 9180(2013).

    [113] N. Englebert et al. Parametrically driven Kerr cavity solitons. Nat. Photonics, 15, 857(2021).

    [114] G. Moille et al. Parametrically driven pure-Kerr temporal solitons in a chip-integrated microcavity. Nat. Photonics, 18, 617(2024).

    [115] A. W. Bruch et al. Pockels soliton microcomb. Nat. Photonics, 15, 21(2021).

    [116] X. Xue et al. Dispersion-less Kerr solitons in spectrally confined optical cavities. Light Sci. Appl., 12, 19(2023).

    [117] I. H. Agha, Y. Okawachi, A. L. Gaeta. Theoretical and experimental investigation of broadband cascaded four-wave mixing in high-Q microspheres. Opt. Express, 17, 16209(2009).

    [118] S. W. Huang et al. Mode-locked ultrashort pulse generation from on-chip normal dispersion microresonators. Phys. Rev. Lett., 114, 053901(2015).

    [119] Y. K. Chembo, D. V. Strekalov, N. Yu. Spectrum and dynamics of optical frequency combs generated with monolithic whispering gallery mode resonators. Phys. Rev. Lett., 104, 103902(2010).

    [120] T. Hansson, S. Wabnitz. Dynamics of microresonator frequency comb generation: models and stability. Nanophotonics, 5, 231(2016).

    [121] S. Coen et al. Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato–Lefever model. Opt. Lett., 38, 37(2012).

    [122] H. Guo et al. Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators. Nat. Phys., 13, 94(2017).

    [123] M. Yu et al. Mode-locked mid-infrared frequency combs in a silicon microresonator. Optica, 3, 854(2016).

    [124] V. Brasch et al. Bringing short-lived dissipative Kerr soliton states in microresonators into a steady state. Opt. Express, 24, 29312(2016).

    [125] C. Bao et al. Direct soliton generation in microresonators. Opt. Lett., 42, 2519(2017).

    [126] J. R. Stone et al. Thermal and nonlinear dissipative-soliton dynamics in Kerr-microresonator frequency combs. Phys. Rev. Lett., 121, 063902(2018).

    [127] K. Liu et al. Mitigating fast thermal instability by engineered laser sweep in AlN soliton microcomb generation. Photonics Res., 11, A10(2023).

    [128] Z. Gong et al. High-fidelity cavity soliton generation in crystalline AlN micro-ring resonators. Opt. Lett., 43, 4366(2018).

    [129] M. H. Anderson et al. Photonic chip-based resonant supercontinuum via pulse-driven Kerr microresonator solitons. Optica, 8, 771(2021).

    [130] W. Weng et al. Gain-switched semiconductor laser driven soliton microcombs. Nat. Commun., 12, 1425(2021).

    [131] E. Obrzud, S. Lecomte, T. Herr. Temporal solitons in microresonators driven by optical pulses. Nat. Photonics, 11, 600(2017).

    [132] H. Zhou et al. Soliton bursts and deterministic dissipative Kerr soliton generation in auxiliary-assisted microcavities. Light Sci. Appl., 8, 50(2019).

    [133] Y. Geng et al. Enhancing the long-term stability of dissipative Kerr soliton microcomb. Opt. Lett., 45, 5073(2020).

    [134] H. Zheng et al. Programmable access to microresonator solitons with modulational sideband heating. APL Photonics, 8, 126110(2023).

    [135] S. Zhang et al. Sub-milliwatt-level microresonator solitons with extended access range using an auxiliary laser. Optica, 6, 206(2019).

    [136] Y. Zhao et al. Soliton burst and bi-directional switching in the platform with positive thermal-refractive coefficient using an auxiliary laser. Laser Photonics Rev., 15, 2100264(2021).

    [137] C. Joshi et al. Thermally controlled comb generation and soliton modelocking in microresonators. Opt. Lett., 41, 2565(2016).

    [138] A. S. Raja et al. Electrically pumped photonic integrated soliton microcomb. Nat. Commun., 10, 680(2019).

    [139] M. L. Gorodetsky, A. D. Pryamikov, V. S. Ilchenko. Rayleigh scattering in high-Q microspheres. J. Opt. Soc. Am. B, 17, 1051(2000).

    [140] W. Jin et al. Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high-Q microresonators. Nat. Photonics, 15, 346(2021).

    [141] G. Lihachev et al. Platicon microcomb generation using laser self-injection locking. Nat. Commun., 13, 1771(2022).

    [142] B. Shen et al. Reliable intracavity reflection for self-injection locking lasers and microcomb generation. Photonics Res., 12, A41(2024).

    [143] X. Yi et al. Active capture and stabilization of temporal solitons in microresonators. Opt. Lett., 41, 2037(2016).

    [144] Q. Li et al. Stably accessing octave-spanning microresonator frequency combs in the soliton regime. Optica, 4, 193(2017).

    [145] N. G. Pavlov et al. Narrow-linewidth lasing and soliton Kerr microcombs with ordinary laser diodes. Nat. Photonics, 12, 694(2018).

    [146] A. Kovach et al. Emerging material systems for integrated optical Kerr frequency combs. Adv. Opt. Photonics, 12, 135(2020).

    [147] C. Y. Wang et al. Mid-infrared optical frequency combs at 2.5 µm based on crystalline microresonators. Nat. Commun., 4, 1345(2013).

    [148] A. A. Savchenkov et al. Tunable optical frequency comb with a crystalline whispering gallery mode resonator. Phys. Rev. Lett., 101, 093902(2008).

    [149] G. Lin et al. Barium fluoride whispering-gallery-mode disk-resonator with one billion quality-factor. Opt. Lett., 39, 6009(2014).

    [150] R. Henriet et al. Kerr optical frequency comb generation in strontium fluoride whispering-gallery mode resonators with billion quality factor. Opt. Lett., 40, 1567(2015).

    [151] N. L. B. Sayson et al. Octave-spanning tunable parametric oscillation in crystalline Kerr microresonators. Nat. Photonics, 13, 701(2019).

    [152] Y. Xuan et al. High-Q silicon nitride microresonators exhibiting low-power frequency comb initiation. Optica, 3, 1171(2016).

    [153] T. C. Briles et al. Interlocking Kerr-microresonator frequency combs for microwave to optical synthesis. Opt. Lett., 43, 2933(2018).

    [154] C. Wang et al. High-Q microresonators on 4H-silicon-carbide-on-insulator platform for nonlinear photonics. Light Sci. Appl., 10, 139(2021).

    [155] H. Jung et al. Tantala Kerr nonlinear integrated photonics. Optica, 8, 811(2021).

    [156] Y. Okawachi et al. Octave-spanning frequency comb generation in a silicon nitride chip. Opt. Lett., 36, 3398(2011).

    [157] L. Chang et al. Ultra-efficient frequency comb generation in AlGaAs-on-insulator microresonators. Nat. Commun., 11, 1331(2020).

    [158] L. Razzari et al. CMOS-compatible integrated optical hyper-parametric oscillator. Nat. Photonics, 4, 41(2010).

    [159] Y. Zhao et al. Visible nonlinear photonics via high-order-mode dispersion engineering. Optica, 7, 135(2020).

    [160] A. G. Griffith et al. Silicon-chip mid-infrared frequency comb generation. Nat. Commun., 6, 6299(2015).

    [161] M. Zhang et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature, 568, 373(2019).

    [162] K. Schneider et al. Gallium phosphide-on-silicon dioxide photonic devices. J. Lightwave Technol., 36, 2994(2018).

    [163] R. Soref. Mid-infrared photonics in silicon and germanium. Nat. Photonics, 4, 495(2010).

    [164] X. Ji et al. Exploiting ultralow loss multimode waveguides for broadband frequency combs. Laser Photonics Rev., 15, 2000353(2021).

    [165] T. S. Tebeneva et al. Crystalline germanium high-Q microresonators for mid-IR. Opt. Express, 32, 15680(2024).

    [166] R. Guo et al. Is Ge an excellent material for mid-IR Kerr frequency combs around 3-μm wavelengths?. J. Lightwave Technol., 40, 2097(2021).

    [167] X. Liu et al. Integrated high-Q crystalline AlN microresonators for broadband Kerr and Raman frequency combs. ACS Photonics, 5, 1943(2018).

    [168] Y. Zheng et al. Integrated gallium nitride nonlinear photonics. Laser Photonics Rev., 16, 2100071(2022).

    [169] W. Xie et al. Ultrahigh-Q AlGaAs-on-insulator microresonators for integrated nonlinear photonics. Opt. Express, 28, 32894(2020).

    [170] D. Xia et al. Integrated chalcogenide photonics for microresonator soliton combs. Laser Photonics Rev., 17, 2200219(2023).

    [171] I. S. Grudinin, V. S. Ilchenko, L. Maleki. Ultrahigh optical Q factors of crystalline resonators in the linear regime. Phys. Rev. A, 74, 063806(2006).

    [172] W. Liang et al. Miniature multioctave light source based on a monolithic microcavity. Optica, 2, 40(2015).

    [173] Z. Qu et al. Fabrication of an ultra-high quality MgF2 micro-resonator for a single soliton comb generation. Opt. Express, 31, 3005(2023).

    [174] X. Yi et al. Soliton frequency comb at microwave rates in a high-Q silica microresonator. Optica, 2, 1078(2015).

    [175] M. Wang et al. Kerr frequency comb and stimulated Raman comb covering S plus C plus L plus U band based on a packaged silica spherical microcavity. J. Lightwave Technol., 41, 199(2023).

    [176] L. Yao et al. Soliton microwave oscillators using oversized billion Q optical microresonators. Optica, 9, 561(2022).

    [177] H. Lee et al. Chemically etched ultrahigh-Q wedge-resonator on a silicon chip. Nat. Photonics, 6, 369(2012).

    [178] J. Li et al. Low-pump-power, low-phase-noise, and microwave to millimeter-wave repetition rate operation in microcombs. Phys. Rev. Lett., 109, 233901(2012).

    [179] K. Y. Yang et al. Broadband dispersion-engineered microresonator on a chip. Nat. Photonics, 10, 316(2016).

    [180] K. Y. Yang et al. Bridging ultrahigh-Q devices and photonic circuits. Nat. Photonics, 12, 297(2018).

    [181] B. E. Little et al. Very high-order microring resonator filters for WDM applications. IEEE Photon. Technol. Lett., 16, 2263(2004).

    [182] D. Duchesne et al. Efficient self-phase modulation in low loss, high index doped silica glass integrated waveguides. Opt. Express, 17, 1865(2009).

    [183] D. J. Moss et al. New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics. Nat. Photonics, 7, 597(2013).

    [184] C. Murray et al. Investigating the thermal robustness of soliton crystal microcombs. Opt. Express, 31, 37749(2023).

    [185] X. Ji et al. Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold. Optica, 4, 619(2017).

    [186] J. A. Smith et al. SiN foundry platform for high performance visible light integrated photonics. Opt. Mater. Express, 13, 458(2023).

    [187] Z. Ye et al. High-Q Si3N4 microresonators based on a subtractive processing for Kerr nonlinear optics. Opt. Express, 27, 35719(2019).

    [188] J. Hu et al. Photo-induced cascaded harmonic and comb generation in silicon nitride microresonators. Sci. Adv., 8, eadd8252(2022).

    [189] A. Billat et al. Large second harmonic generation enhancement in Si3N4 waveguides by all-optically induced quasi-phase-matching. Nat. Commun., 8, 1016(2017).

    [190] A. D. White et al. Integrated passive nonlinear optical isolators. Nat. Photonics, 17, 143(2023).

    [191] E. A. Douglas et al. Effect of precursors on propagation loss for plasma-enhanced chemical vapor deposition of SiNx:H waveguides. Opt. Mater. Express, 6, 2892(2016).

    [192] Z. Shao et al. Ultra-low temperature silicon nitride photonic integration platform. Opt. Express, 24, 1865(2016).

    [193] J. Chiles et al. Deuterated silicon nitride photonic devices for broadband optical frequency comb generation. Opt. Lett., 43, 1527(2018).

    [194] D. Bose et al. Anneal-free ultra-low loss silicon nitride integrated photonics. Light Sci. Appl., 13, 156(2024).

    [195] D.-G. Kim et al. Universal light-guiding geometry for on-chip resonators having extremely high Q-factor. Nat. Commun., 11, 5933(2020).

    [196] M. Garrett et al. Integrated microwave photonic notch filter using a heterogeneously integrated Brillouin and active-silicon photonic circuit. Nat. Commun., 14, 7544(2023).

    [197] R. Schilling et al. Ultrahigh-Q on-chip silicon-germanium microresonators. Optica, 9, 284(2022).

    [198] R. Soref. The past, present, and future of silicon photonics. IEEE J. Sel. Top. Quantum Electron., 12, 1678(2006).

    [199] Z. Tao et al. Versatile photonic molecule switch in multimode microresonators. Light Sci. Appl., 13, 51(2024).

    [200] S. A. Miller et al. Low-loss silicon platform for broadband mid-infrared photonics. Optica, 4, 707(2017).

    [201] J. S. Penadés et al. Suspended silicon waveguides for long-wave infrared wavelengths. Opt. Lett., 43, 795(2018).

    [202] L. Zhang et al. Nonlinear group IV photonics based on silicon and germanium: from near-infrared to mid-infrared. Nanophotonics, 3, 247(2014).

    [203] L. Carletti et al. Nonlinear optical response of low loss silicon germanium waveguides in the mid-infrared. Opt. Express, 23, 8261(2015).

    [204] M. Sinobad et al. Mid-infrared octave spanning supercontinuum generation to 8.5 µm in silicon-germanium waveguides. Optica, 5, 360(2018).

    [205] W. Xie et al. Silicon-integrated nonlinear III–V photonics. Photonics Res., 10, 535(2022).

    [206] X. Liu et al. Aluminum nitride nanophotonics for beyond-octave soliton microcomb generation and self-referencing. Nat. Commun., 12, 5428(2021).

    [207] Y. He et al. High-speed tunable microwave-rate soliton microcomb. Nat. Commun., 14, 3467(2023).

    [208] P. Latawiec et al. On-chip diamond Raman laser. Optica, 2, 924(2015).

    [209] M. Ruf et al. Quantum networks based on color centers in diamond. J. Appl. Phys., 130, 070901(2021).

    [210] P. K. Shandilya et al. Diamond integrated quantum nanophotonics: spins, photons and phonons. J. Lightwave Technol., 40, 7538(2022).

    [211] D. M. Lukin, M. A. Guidry, J. Vučković. Integrated quantum photonics with silicon carbide: challenges and prospects. PRX Quantum, 1, 020102(2020).

    [212] A. A. Savchenkov et al. Optical resonators with ten million finesse. Opt. Express, 15, 6768(2007).

    [213] X. Zhang, A. M. Armani. Silica microtoroid resonator sensor with monolithically integrated waveguides. Opt. Express, 21, 23592(2013).

    [214] J. Liu et al. High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits. Nat. Commun., 12, 2236(2021).

    [215] S. Fujii et al. All-precision-machining fabrication of ultrahigh-Q crystalline optical microresonators. Optica, 7, 694(2020).

    [216] K. N. Min’kov et al. Fabrication of high-Q crystalline whispering gallery mode microcavities using single-point diamond turning. J. Opt. Technol., 88, 348(2021).

    [217] M. Wang et al. Fabrication and packaging for high-Q CaF2 crystalline resonators with modal modification. Chin. Opt. Lett., 17, 111401(2019).

    [218] V. S. Ilchenko et al. Nonlinear optics and crystalline whispering gallery mode cavities. Phys. Rev. Lett., 92, 043901(2004).

    [219] A. A. Savchenkov et al. Kilohertz optical resonances in dielectric crystal cavities. Phys. Rev. A, 70, 051804(2004).

    [220] M. Cai, O. Painter, K. J. Vahala. Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system. Phys. Rev. Lett., 85, 74(2000).

    [221] M. Cai, G. Hunziker, K. Vahala. Fiber-optic add-drop device based on a silica microsphere-whispering gallery mode system. IEEE Photon. Technol. Lett., 11, 686(1999).

    [222] P. Wang et al. Lead silicate glass microsphere resonators with absorption-limited Q. Appl. Phys. Lett., 98, 181105(2011).

    [223] T. Tan et al. Multispecies and individual gas molecule detection using Stokes solitons in a graphene over-modal microresonator. Nat. Commun., 12, 6716(2021).

    [224] T. Kippenberg, S. Spillane, K. Vahala. Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip. Appl. Phys. Lett., 85, 6113(2004).

    [225] M. H. P. Pfeiffer et al. Octave-spanning dissipative Kerr soliton frequency combs in Si3N4 microresonators. Optica, 4, 684(2017).

    [226] P. Maier et al. Sub-kHz-linewidth external-cavity laser (ECL) with Si3N4 resonator used as a tunable pump for a Kerr frequency comb. J. Lightwave Technol., 41, 3479(2023).

    [227] Y. Liu et al. A photonic integrated circuit-based erbium-doped amplifier. Science, 376, 1309(2022).

    [228] Y. Liu et al. A fully hybrid integrated erbium-based laser. Nat. Photonics, 18, 829(2024).

    [229] J. Liu et al. Photonic microwave generation in the X-and K-band using integrated soliton microcombs. Nat. Photonics, 14, 486(2020).

    [230] Y. Wang, Y. Jiao, K. Williams. Scaling photonic integrated circuits with InP technology: a perspective. APL Photonics, 9, 050902(2024).

    [231] D. Liang, J. E. Bowers. Recent progress in lasers on silicon. Nat. Photonics, 4, 511(2010).

    [232] Y. Gao et al. High-power, narrow-linewidth, miniaturized silicon photonic tunable laser with accurate frequency control. J. Lightwave Technol., 38, 265(2020).

    [233] T. Tekin. Review of packaging of optoelectronic, photonic, and MEMS components. IEEE J. Sel. Top. Quantum Electron., 17, 704(2011).

    [234] M. He et al. Two-microlens coupling scheme with revolved hyperboloid sol-gel microlens arrays for high-power-efficiency optical coupling. J. Lightwave Technol., 24, 2940(2006).

    [235] K. Kunze et al. Microlens arrays for multichannel laser-to-waveguide coupling. Appl. Opt., 63, 5876(2024).

    [236] M. R. Billah et al. Hybrid integration of silicon photonics circuits and InP lasers by photonic wire bonding. Optica, 5, 876(2018).

    [237] N. Lindenmann et al. Photonic wire bonding: a novel concept for chip-scale interconnects. Opt. Express, 20, 17667(2012).

    [238] C. Xiang et al. 3D integration enables ultralow-noise isolator-free lasers in silicon photonics. Nature, 620, 78(2023).

    [239] S. Keyvaninia et al. Heterogeneously integrated III–V/silicon distributed feedback lasers. Opt. Lett., 38, 5434(2013).

    [240] A. W. Fang et al. Electrically pumped hybrid AlGaInAs-silicon evanescent laser. Opt. Express, 14, 9203(2006).

    [241] C. Xiang et al. High-performance lasers for fully integrated silicon nitride photonics. Nat. Commun., 12, 6650(2021).

    [242] G. Roelkens et al. Present and future of micro-transfer printing for heterogeneous photonic integrated circuits. APL Photonics, 9, 010901(2024).

    [243] B. Haq et al. Micro-transfer-printed III–V-on-silicon C-band semiconductor optical amplifiers. Laser Photonics Rev., 14, 1900364(2020).

    [244] J. R. Vaskasi et al. High wall-plug efficiency and narrow linewidth III–V-on-silicon C-band DFB laser diodes. Opt. Express, 30, 27983(2022).

    [245] A. Lee et al. Continuous-wave InAs/GaAs quantum-dot laser diodes monolithically grown on Si substrate with low threshold current densities. Opt. Express, 20, 22181(2012).

    [246] Y. Arakawa, H. Sakaki. Multidimensional quantum well laser and temperature-dependence of its threshold current. Appl. Phys. Lett., 40, 939(1982).

    [247] Z. Zhou et al. Prospects and applications of on-chip lasers. Elight, 3, 1(2023).

    [248] Y. Wan et al. 1.3 µm quantum dot-distributed feedback lasers directly grown on (001) Si. Laser Photonics Rev., 14, 2000037(2020).

    [249] C. Shang et al. High-temperature reliable quantum-dot lasers on Si with misfit and threading dislocation filters. Optica, 8, 749(2021).

    [250] P. Kik, A. Polman. Cooperative upconversion as the gain-limiting factor in Er doped miniature Al2O3 optical waveguide amplifiers. J. Appl. Phys., 93, 5008(2003).

    [251] H. R. Telle et al. Carrier-envelope offset phase control: a novel concept for absolute optical frequency measurement and ultrashort pulse generation. Appl. Phys. B, 69, 327(1999).

    [252] Z. Li et al. Experimental observations of bright dissipative cavity solitons and their collapsed snaking in a Kerr resonator with normal dispersion driving. Optica, 7, 1195(2020).

    [253] S. Coen, M. Erkintalo. Universal scaling laws of Kerr frequency combs. Opt. Lett., 38, 1790(2013).

    [254] J. Gu et al. Octave-spanning soliton microcomb in silica microdisk resonators. Opt. Lett., 48, 1100(2023).

    [255] P.-Y. Wang et al. Octave soliton microcombs in lithium niobate microresonators. Opt. Lett., 49, 1729(2024).

    [256] M. H. Anderson et al. Zero dispersion Kerr solitons in optical microresonators. Nat. Commun., 13, 4764(2022).

    [257] A. F. J. Runge et al. Infinite hierarchy of solitons: Interaction of Kerr nonlinearity with even orders of dispersion. Phys. Rev. Res., 3, 013166(2021).

    [258] H. Taheri, A. B. Matsko. Quartic dissipative solitons in optical Kerr cavities. Opt. Lett., 44, 3086(2019).

    [259] S. Yao, K. Liu, C. Yang. Pure quartic solitons in dispersion-engineered aluminum nitride micro-cavities. Opt. Express, 29, 8312(2021).

    [260] Y. L. Qiang, T. J. Alexander, C. M. de Sterke. Generalized sixth-order dispersion solitons. Phys. Rev. A, 105, 023501(2022).

    [261] P. Parra-Rivas, D. Gomila, L. Gelens. Coexistence of stable dark and bright-soliton Kerr combs in normal-dispersion resonators. Phys. Rev. A, 95, 053863(2017).

    [262] Z. Xiao et al. Near-zero-dispersion soliton and broadband modulational instability Kerr microcombs in anomalous dispersion. Light Sci. Appl., 12, 33(2023).

    [263] S. Zhang, T. Bi, P. Del’Haye. Quintic dispersion soliton frequency combs in a microresonator. Laser Photonics Rev., 17, 2300075(2023).

    [264] S.-P. Yu et al. A continuum of bright and dark-pulse states in a photonic-crystal resonator. Nat. Commun., 13, 3134(2022).

    [265] X. Lu et al. Multi-mode microcavity frequency engineering through a shifted grating in a photonic crystal ring. Photonics Res., 11, A72(2023).

    [266] H. Shu et al. Submilliwatt, widely tunable coherent microcomb generation with feedback-free operation. Adv. Photonics, 5, 036007(2023).

    [267] H. Wang et al. Dirac solitons in optical microresonators. Light Sci. Appl., 9, 205(2020).

    [268] Z. Lin et al. Turnkey generation of Kerr soliton microcombs on thin-film lithium niobate on insulator microresonators powered by the photorefractive effect. Opt. Express, 29, 42932(2021).

    [269] Y. Okawachi et al. Active tuning of dispersive waves in Kerr soliton combs. Opt. Lett., 47, 2234(2022).

    [270] Z. Yuan et al. Soliton pulse pairs at multiple colours in normal dispersion microresonators. Nat. Photonics, 17, 977(2023).

    [271] Q.-X. Ji et al. Engineered zero-dispersion microcombs using CMOS-ready photonics. Optica, 10, 279(2023).

    [272] D. Goldring, U. Levy, D. Mendlovic. Highly dispersive micro-ring resonator based on one dimensional photonic crystal waveguide design and analysis. Opt. Express, 15, 3156(2007).

    [273] X. Lu, A. McClung, K. Srinivasan. High-Q slow light and its localization in a photonic crystal microring. Nat. Photonics, 16, 66(2022).

    [274] G. Moille et al. Fourier synthesis dispersion engineering of photonic crystal microrings for broadband frequency combs. Commun. Phys., 6, 144(2023).

    [275] S. Zhang et al. Spectral extension and synchronization of microcombs in a single microresonator. Nat. Commun., 11, 6384(2020).

    [276] G. Moille et al. Ultra-broadband Kerr microcomb through soliton spectral translation. Nat. Commun., 12, 7275(2021).

    [277] X. Xue et al. Microresonator Kerr frequency combs with high conversion efficiency. Laser Photonics Rev., 11, 1600276(2017).

    [278] J. M. C. Boggio et al. Efficient Kerr soliton comb generation in micro-resonator with interferometric back-coupling. Nat. Commun., 13, 1292(2022).

    [279] J. Zang et al. Laser-power consumption of soliton formation in a bidirectional Kerr resonator(2024).

    [280] J. K. Jang et al. Conversion efficiency of soliton Kerr combs. Opt. Lett., 46, 3657(2021).

    [281] X. Zhang et al. Advances in resonator-based Kerr frequency combs with high conversion efficiencies. npj Nanophotonics, 1, 26(2024).

    [282] Q.-F. Yang et al. Efficient microresonator frequency combs. eLight, 4, 18(2024).

    [283] C. Bao et al. Nonlinear conversion efficiency in Kerr frequency comb generation. Opt. Lett., 39, 6126(2014).

    [284] R. Kormokar, M. H. M. Shamim, M. Rochette. Energy conversion efficiency from a high-order soliton to fundamental solitons in the presence of Raman scattering. J. Opt. Soc. Am. B, 40, 412(2023).

    [285] J. Zang et al. High-efficiency microcombs aligned with ITU-T grid for WDM optical interconnects(2023).

    [286] I. Rebolledo-Salgado et al. Platicon dynamics in photonic molecules. Commun. Phys., 6, 303(2023).

    [287] K. Nishimoto et al. Investigation of the phase noise of a microresonator soliton comb. Opt. Express, 28, 19295(2020).

    [288] F. Lei et al. Optical linewidth of soliton microcombs. Nat. Commun., 13, 3161(2022).

    [289] T. E. Drake et al. Thermal decoherence and laser cooling of Kerr microresonator solitons. Nat. Photonics, 14, 480(2020).

    [290] G. Moille et al. Kerr-microresonator soliton frequency combs at cryogenic temperatures. Phys. Rev. Appl., 12, 034057(2019).

    [291] Q.-F. Yang et al. Dispersive-wave induced noise limits in miniature soliton microwave sources. Nat. Commun., 12, 1442(2021).

    [292] D. Hou et al. Long-term stabilization of fiber laser using phase-locking technique with ultra-low phase noise and phase drift. IEEE J. Sel. Top. Quantum Electron., 20, 456(2014).

    [293] G. Rizzelli et al. Phase noise impact and scalability of self-homodyne short-reach coherent transmission using DFB lasers. J. Lightwave Technol., 40, 37(2022).

    [294] E. D. Black. An introduction to Pound-Drever-Hall laser frequency stabilization. Am. J. Phys., 69, 79(2001).

    [295] D. Kwon et al. Ultrastable microwave and soliton-pulse generation from fibre-photonic-stabilized microcombs. Nat. Commun., 13, 381(2022).

    [296] R. Liu et al. Low-phase-noise microwave generation with a free-running dual-pumped Si3N4 soliton microcomb. Opt. Lett., 49, 754(2024).

    [297] Z.-Y. Wang et al. Numerical characterization of soliton microcomb in an athermal hybrid Si3N4-TiO2 microring. Appl. Opt., 61, 4329(2022).

    [298] A. F. Fercher et al. Optical coherence tomography-principles and applications. Rep. Prog. Phys., 66, 239(2003).

    [299] A. C. Triscari et al. Quiet point engineering for low-noise microwave generation with soliton microcombs. Commun. Phys., 6, 318(2023).

    [300] C. Lao et al. Quantum decoherence of dark pulses in optical microresonators. Nat. Commun., 14, 1802(2023).

    [301] W. Weng et al. Spectral purification of microwave signals with disciplined dissipative Kerr solitons. Phys. Rev. Lett., 122, 013902(2019).

    [302] W. Weng et al. Microresonator dissipative Kerr solitons synchronized to an optoelectronic oscillator. Phys. Rev. Appl., 17, 024030(2022).

    [303] F. Lei et al. Self-injection-locked optical parametric oscillator based on microcombs. Optica, 11, 420(2024).

    [304] J. D. Jost et al. Counting the cycles of light using a self-referenced optical microresonator. Optica, 2, 706(2015).

    [305] L. Cai et al. Octave-spanning microcomb generation in 4H-silicon-carbide-on-insulator photonics platform. Photonics Res., 10, 870(2022).

    [306] P. Del’Haye et al. Full stabilization of a microresonator-based optical frequency comb. Phys. Rev. Lett., 101, 053903(2008).

    [307] V. Brasch et al. Self-referenced photonic chip soliton Kerr frequency comb. Light Sci. Appl., 6, e16202(2017).

    [308] H. Weng et al. Directly accessing octave-spanning dissipative Kerr soliton frequency combs in an AIN microresonator. Photonics Res., 9, 1351(2021).

    [309] T. E. Drake et al. Terahertz-rate Kerr-microresonator optical clockwork. Phys. Rev. X, 9, 031023(2019).

    [310] K. Wu et al. Vernier microcombs for high-frequency carrier envelope offset and repetition rate detection. Optica, 10, 626(2023).

    [311] L. Stern et al. Direct Kerr frequency comb atomic spectroscopy and stabilization. Sci. Adv., 6, eaax6230(2020).

    [312] M. Yu et al. Gas-phase microresonator-based comb spectroscopy without an external pump laser. ACS Photonics, 5, 2780(2018).

    [313] E. Zano et al. Plasmonic-enhanced multiparameter direct microcomb spectroscopy. Optica, 11, 1192(2024).

    [314] Q.-F. Yang et al. Vernier spectrometer using counterpropagating soliton microcombs. Science, 363, 965(2019).

    [315] J. N. Eckstein, A. I. Ferguson, T. W. Hansch. High-resolution 2-photon spectroscopy with picosecond light-pulses. Phys. Rev. Lett., 40, 847(1978).

    [316] N. Picque, T. W. Haensch. Frequency comb spectroscopy. Nat. Photonics, 13, 146(2019).

    [317] A. R. Johnson et al. Microresonator-based comb generation without an external laser source. Opt. Express, 22, 1394(2014).

    [318] D. C. Cole et al. Kerr-microresonator solitons from a chirped background. Optica, 5, 1304(2018).

    [319] S.-J. Lee et al. Ultrahigh scanning speed optical coherence tomography using optical frequency comb generators. Jpn. J. Appl. Phys., 40, L878(2001).

    [320] A. Dutt et al. On-chip dual-comb source for spectroscopy. Sci. Adv., 4, e1701858(2018).

    [321] Q.-F. Yang et al. Counter-propagating solitons in microresonators. Nat. Photonics, 11, 560(2017).

    [322] M. Yu et al. Silicon-chip-based mid-infrared dual-comb spectroscopy. Nat. Commun., 9, 1869(2018).

    [323] M.-G. Suh, K. J. Vahala. Soliton microcomb range measurement. Science, 359, 884(2018).

    [324] J. Wang et al. Long-distance ranging with high precision using a soliton microcomb. Photonics Res., 8, 1964(2020).

    [325] R. Collis. Lidar. Appl. Opt., 9, 1782(1970).

    [326] F. Keilmann, C. Gohle, R. Holzwarth. Time-domain mid-infrared frequency-comb spectrometer. Opt. Lett., 29, 1542(2004).

    [327] I. Coddington et al. Rapid and precise absolute distance measurements at long range. Nat. Photonics, 3, 351(2009).

    [328] Y. Yang et al. Optical ranging using coherent Kerr soliton dual-microcombs with extended ambiguity distance. J. Lightwave Technol., 42, 5450(2024).

    [329] A. Lukashchuk et al. Dual chirped microcomb based parallel ranging at megapixel-line rates. Nat. Commun., 13, 3280(2022).

    [330] P. J. Marchand et al. Soliton microcomb based spectral domain optical coherence tomography. Nat. Commun., 12, 427(2021).

    [331] R. Leitgeb, C. K. Hitzenberger, A. F. Fercher. Performance of Fourier domain vs. time domain optical coherence tomography. Opt. Express, 11, 889(2003).

    [332] T. Bajraszewski et al. Improved spectral optical coherence tomography using optical frequency comb. Opt. Express, 16, 4163(2008).

    [333] T. Melton et al. Optical coherence tomography imaging and noise characterization based on 1 µm microresonator frequency combs. APL Photonics, 9, 086105(2024).

    [334] X. Li et al. Multi-scale reconstrucion of undersampled spectral-spatial OCT data for coronary imaging using deep learning. IEEE Trans. Biomed. Eng., 69, 3667(2022).

    [335] T. Wilken et al. A spectrograph for exoplanet observations calibrated at the centimetre-per-second level. Nature, 485, 611(2012).

    [336] E. Obrzud et al. A microphotonic astrocomb. Nat. Photonics, 13, 31(2019).

    [337] T. Wilken et al. High-precision calibration of spectrographs. Mon. Not. R. Astron. Soc., 405, L16(2010).

    [338] P. Marin-Palomo et al. Microresonator-based solitons for massively parallel coherent optical communications. Nature, 546, 274(2017).

    [339] A. Fulop et al. High-order coherent communications using mode-locked dark-pulse Kerr combs from microresonators. Nat. Commun., 9, 1598(2018).

    [340] B. Corcoran et al. Ultra-dense optical data transmission over standard fibre with a single chip source. Nat. Commun., 11, 2568(2020).

    [341] A. A. Jorgensen et al. Petabit-per-second data transmission using a chip-scale microcomb ring resonator source. Nat. Photonics, 16, 798(2022).

    [342] B. M. M. Heffernan et al. 60 Gbps real-time wireless communications at 300 GHz carrier using a Kerr microcomb-based source. APL Photonics, 8, 066106(2023).

    [343] C. Prayoonyong et al. Frequency comb distillation for optical superchannel transmission. J. Lightwave Technol., 39, 6097(2021).

    [344] Y. Geng et al. Coherent optical communications using coherence-cloned Kerr soliton microcombs. Nat. Commun., 13, 1070(2022).

    [345] J. Feldmann et al. Parallel convolutional processing using an integrated photonic tensor core. Nature, 589, 52(2021).

    [346] B. Bai et al. Microcomb-based integrated photonic processing unit. Nat. Commun., 14, 66(2023).

    [347] D. A. B. Miller. Attojoule optoelectronics for low-energy information processing and communications. J. Lightwave Technol., 35, 346(2017).

    [348] Y. Shen et al. Deep learning with coherent nanophotonic circuits. Nat. Photonics, 11, 441(2017).

    [349] X. Lin et al. All-optical machine learning using diffractive deep neural networks. Science, 361, 1004(2018).

    [350] S. Xu et al. High-order tensor flow processing using integrated photonic circuits. Nat. Commun., 13, 7970(2022).

    [351] B. J. Shastri et al. Photonics for artificial intelligence and neuromorphic computing. Nat. Photonics, 15, 102(2021).

    [352] D. Marpaung, J. Yao, J. Capmany. Integrated microwave photonics. Nat. Photonics, 13, 80(2019).

    [353] B. Wang et al. Towards high-power, high-coherence, integrated photonic mmWave platform with microcavity solitons. Light Sci. Appl., 10, 4(2021).

    [354] E. Lucas et al. Ultralow-noise photonic microwave synthesis using a soliton microcomb-based transfer oscillator. Nat. Commun., 11, 374(2020).

    [355] S. Sun et al. Integrated optical frequency division for microwave and mmWave generation. Nature, 627, 540(2024).

    [356] I. Kudelin et al. Photonic chip-based low-noise microwave oscillator. Nature, 627, 534(2024).

    [357] Y. Zhao et al. All-optical frequency division on-chip using a single laser. Nature, 627, 546(2024).

    [358] X. Xu et al. Advanced adaptive photonic RF filters with 80 taps based on an integrated optical micro-comb source. J. Lightwave Technol., 37, 1288(2019).

    [359] X. Xu et al. Broadband RF channelizer based on an integrated optical frequency Kerr comb source. J. Lightwave Technol., 36, 4519(2018).

    [360] X. Xu et al. Photonic microwave true time delays for phased array antennas using a 49 GHz FSR integrated optical micro-comb source Invited. Photonics Res., 6, B30(2018).

    [361] M. Tan et al. Microwave and RF photonic fractional hilbert transformer based on a 50 GHz Kerr micro-comb. J. Lightwave Technol., 37, 6097(2019).

    [362] X. Xu et al. Reconfigurable broadband microwave photonic intensity differentiator based on an integrated optical frequency comb source. APL Photonics, 2, 096104(2017).

    [363] X. Xu et al. Photonic RF and microwave integrator based on a transversal filter with soliton crystal microcombs. IEEE Trans. Circuits Syst., 67, 3582(2020).

    [364] M. Tan et al. Photonic RF arbitrary waveform generator based on a soliton crystal micro-comb source. J. Lightwave Technol., 38, 6221(2020).

    [365] T. G. Nguyen et al. Integrated frequency comb source based Hilbert transformer for wideband microwave photonic phase analysis. Opt. Express, 23, 22087(2015).

    [366] B. Wang et al. Radio-frequency line-by-line Fourier synthesis based on optical soliton microcombs. Photonics Res., 10, 932(2022).

    [367] W. Han et al. Dual-polarization RF channelizer based on microcombs. Opt. Express, 32, 11281(2024).

    [368] J. Hu et al. Reconfigurable radiofrequency filters based on versatile soliton microcombs. Nat. Commun., 11, 4377(2020).

    [369] X. Xue et al. Microcomb-based true-time-delay network for microwave beamforming with arbitrary beam pattern control. J. Lightwave Technol., 36, 2312(2018).

    [370] X. Xu et al. Broadband microwave frequency conversion based on an integrated optical micro-comb source. J. Lightwave Technol., 38, 332(2020).

    [371] A. Lukashchuk et al. Chaotic microcomb-based parallel ranging. Nat. Photonics, 17, 814(2023).

    [372] P. Li et al. Scalable parallel ultrafast optical random bit generation based on a single chaotic microcomb. Light Sci. Appl., 13, 66(2024).

    [373] A. Lukashchuk et al. Chaotic microcomb inertia-free parallel ranging. APL Photonics, 8, 056102(2023).

    [374] W. Xiong et al. 3D parallel pulsed chaos LiDAR system. Opt. Express, 32, 11763(2024).

    [375] Y. Liu et al. Parallel wavelength-division-multiplexed signal transmission and dispersion compensation enabled by soliton microcombs and microrings. Nat. Commun., 15, 3645(2024).

    [376] A. Rizzo et al. Massively scalable Kerr comb-driven silicon photonic link. Nat. Photonics, 17, 781(2023).

    [377] I. S. Grudinin et al. Ultra high Q crystalline microcavities. Opt. Commun., 265, 33(2006).

    [378] W. Liang et al. Generation of near-infrared frequency combs from a MgF2 whispering gallery mode resonator. Opt. Lett., 36, 2290(2011).

    Haowen Shu, Bitao Shen, Huajin Chang, Junhao Han, Jiong Xiao, Xingjun Wang, "Microcomb technology: from principles to applications," Photon. Insights 3, R09 (2024)
    Download Citation