[7] K. J. Vahala. Optical microcavities. Nature, 424, 839(2003).
[11] T. Herr et al. Temporal solitons in optical microresonators. Nat. Photonics, 8, 145(2014).
[13] D. K. Armani et al. Ultra-high-Q toroid microcavity on a chip. Nature, 421, 925(2003).
[19] B. J. M. Hausmann et al. Diamond nonlinear photonics. Nat. Photonics, 8, 369(2014).
[21] M. Pu et al. Efficient frequency comb generation in AlGaAs-on-insulator. Optica, 3, 823(2016).
[28] M. Yu et al. Breather soliton dynamics in microresonators. Nat. Commun., 8, 14569(2017).
[29] D. C. Cole et al. Soliton crystals in Kerr resonators. Nat. Photonics, 11, 671(2017).
[31] Q.-F. Yang et al. Stokes solitons in optical microcavities. Nat. Phys., 13, 53(2017).
[33] H. Bao et al. Laser cavity-soliton microcombs. Nat. Photonics, 13, 384(2019).
[36] M.-G. Suh et al. Microresonator soliton dual-comb spectroscopy. Science, 354, 600(2016).
[41] H. Shu et al. Microcomb-driven silicon photonic systems. Nature, 605, 457(2022).
[42] S. B. Papp et al. Microresonator frequency comb optical clock. Optica, 1, 10(2014).
[53] H. Shu et al. Microcomb-driven silicon photonic systems. Nature, 605, 457(2022).
[60] B. Y. Kim et al. Turn-key, high-efficiency Kerr comb source. Opt. Lett., 44, 4475(2019).
[62] B. Stern et al. Battery-operated integrated frequency comb generator. Nature, 562, 401(2018).
[66] J. Li et al. The efficiency of pulse pumped soliton microcombs. Optica, 9, 231(2022).
[76] H. Bao et al. Laser cavity-soliton microcombs. Nat. Photonics, 13, 384(2019).
[77] B. Shen et al. Integrated turnkey soliton microcombs. Nature, 582, 365(2020).
[79] M. A. Guidry et al. Quantum optics of soliton microcombs. Nat. Photonics, 16, 52(2022).
[81] J. Ling et al. Electrically empowered microcomb laser. Nat. Commun., 15, 4192(2024).
[82] D. K. Armani et al. Ultra-high-Q toroid microcavity on a chip. Nature, 421, 925(2003).
[91] G. P. Agrawal. Nonlinear Science at the Dawn of the 21st Century 195-211(2000).
[96] T. Herr, M. L. Gorodetsky, T. J. Kippenberg. Dissipative Kerr solitons in optical microresonators. Nonlinear optical cavity dynamics: from microresonators to fiber lasers, 129(2016).
[100] M. Yu et al. Breather soliton dynamics in microresonators. Nat. Commun., 8, 14569(2017).
[102] D. C. Cole et al. Soliton crystals in Kerr resonators. Nat. Photonics, 11, 671(2017).
[104] Y. He et al. Self-starting bi-chromatic LiNbO3 soliton microcomb. Optica, 6, 1138(2019).
[106] Y. He et al. Perfect soliton crystals on demand. Laser Photonics Rev., 14, 1900339(2020).
[107] Z. Z. Lu et al. Synthesized soliton crystals. Nat. Commun., 12, 3179(2021).
[110] M. Rowley et al. Self-emergence of robust solitons in a microcavity. Nature, 608, 303(2022).
[112] F. Leo et al. Dynamics of one-dimensional Kerr cavity solitons. Opt. Express, 21, 9180(2013).
[113] N. Englebert et al. Parametrically driven Kerr cavity solitons. Nat. Photonics, 15, 857(2021).
[115] A. W. Bruch et al. Pockels soliton microcomb. Nat. Photonics, 15, 21(2021).
[125] C. Bao et al. Direct soliton generation in microresonators. Opt. Lett., 42, 2519(2017).
[155] H. Jung et al. Tantala Kerr nonlinear integrated photonics. Optica, 8, 811(2021).
[163] R. Soref. Mid-infrared photonics in silicon and germanium. Nat. Photonics, 4, 495(2010).
[205] W. Xie et al. Silicon-integrated nonlinear III–V photonics. Photonics Res., 10, 535(2022).
[208] P. Latawiec et al. On-chip diamond Raman laser. Optica, 2, 924(2015).
[228] Y. Liu et al. A fully hybrid integrated erbium-based laser. Nat. Photonics, 18, 829(2024).
[231] D. Liang, J. E. Bowers. Recent progress in lasers on silicon. Nat. Photonics, 4, 511(2010).
[247] Z. Zhou et al. Prospects and applications of on-chip lasers. Elight, 3, 1(2023).
[267] H. Wang et al. Dirac solitons in optical microresonators. Light Sci. Appl., 9, 205(2020).
[279] J. Zang et al. Laser-power consumption of soliton formation in a bidirectional Kerr resonator(2024).
[280] J. K. Jang et al. Conversion efficiency of soliton Kerr combs. Opt. Lett., 46, 3657(2021).
[282] Q.-F. Yang et al. Efficient microresonator frequency combs. eLight, 4, 18(2024).
[285] J. Zang et al. High-efficiency microcombs aligned with ITU-T grid for WDM optical interconnects(2023).
[288] F. Lei et al. Optical linewidth of soliton microcombs. Nat. Commun., 13, 3161(2022).
[316] N. Picque, T. W. Haensch. Frequency comb spectroscopy. Nat. Photonics, 13, 146(2019).
[320] A. Dutt et al. On-chip dual-comb source for spectroscopy. Sci. Adv., 4, e1701858(2018).
[323] M.-G. Suh, K. J. Vahala. Soliton microcomb range measurement. Science, 359, 884(2018).
[325] R. Collis. Lidar. Appl. Opt., 9, 1782(1970).
[336] E. Obrzud et al. A microphotonic astrocomb. Nat. Photonics, 13, 31(2019).
[346] B. Bai et al. Microcomb-based integrated photonic processing unit. Nat. Commun., 14, 66(2023).
[352] D. Marpaung, J. Yao, J. Capmany. Integrated microwave photonics. Nat. Photonics, 13, 80(2019).
[356] I. Kudelin et al. Photonic chip-based low-noise microwave oscillator. Nature, 627, 534(2024).
[371] A. Lukashchuk et al. Chaotic microcomb-based parallel ranging. Nat. Photonics, 17, 814(2023).
[374] W. Xiong et al. 3D parallel pulsed chaos LiDAR system. Opt. Express, 32, 11763(2024).
[377] I. S. Grudinin et al. Ultra high Q crystalline microcavities. Opt. Commun., 265, 33(2006).