• Photonics Research
  • Vol. 8, Issue 7, 1155 (2020)
Yang Zhang1, Jiangming Xu1、2、*, Jun Ye1, Jiaxin Song1, Tianfu Yao1, and Pu Zhou1、3、*
Author Affiliations
  • 1College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
  • 2e-mail: jmxu1998@163.com
  • 3e-mail: zhoupu203@163.com
  • show less
    DOI: 10.1364/PRJ.390950 Cite this Article Set citation alerts
    Yang Zhang, Jiangming Xu, Jun Ye, Jiaxin Song, Tianfu Yao, Pu Zhou. Ultralow-quantum-defect Raman laser based on the boson peak in phosphosilicate fiber[J]. Photonics Research, 2020, 8(7): 1155 Copy Citation Text show less
    References

    [1] R. Kashyap, K. J. Blow. Observation of catastrophic self-propelled self-focusing in optical fibres. Electron. Lett., 24, 47-49(1988).

    [2] C. Jauregui, J. Limpert, A. Tunnermann. High-power fibre lasers. Nat. Photonics, 7, 861-867(2013).

    [3] S. Matsubara, K. Uno, Y. Nakajima, S. Kawato, T. Kobayashi, A. Shirakawa. Extremely low quantum defect oscillation of ytterbium fiber laser by laser diode pumping at room temperature. Advanced Solid-State Photonics, TuB4(2007).

    [4] T. Yao, J. Ji, J. Nilsson. Ultra-low quantum-defect heating in ytterbium-doped aluminosilicate fibers. J. Lightwave Technol., 32, 429-434(2014).

    [5] M. Dubinskii, J. Zhang, V. Ter-Mikirtychev. Highly scalable, resonantly cladding-pumped, Er-doped fiber laser with record efficiency. Opt. Lett., 34, 1507-1509(2009).

    [6] S. R. Bowman. Low quantum defect laser performance. Opt. Eng., 56, 011104(2016).

    [7] C. A. Codemard, J. K. Sahu, J. Nilsson. Tandem cladding-pumping for control of excess gain in ytterbium-doped fiber amplifiers. IEEE J. Quantum Electron., 46, 1860-1869(2010).

    [8] M. A. Jebali, J.-N. Maran, S. LaRochelle. 264 W output power at 1585 nm in Er-Yb codoped fiber laser using in-band pumping. Opt. Lett., 39, 3974-3977(2014).

    [9] Y. Wang, J. Yang, C. Huang, Y. Luo, S. Wang, Y. Tang, J. Xu. High power tandem-pumped thulium-doped fiber laser. Opt. Express, 23, 2991-2998(2015).

    [10] H. Xiao, J. Leng, H. Zhang, L. Huang, J. Xu, P. Zhou. High-power 1018 nm ytterbium-doped fiber laser and its application in tandem pump. Appl. Opt., 54, 8166-8169(2015).

    [11] P. Ma, H. Xiao, D. Meng, W. Liu, R. Tao, J. Leng, Y. Ma, R. Su, P. Zhou, Z. Liu. High power all-fiberized and narrow-bandwidth MOPA system by tandem pumping strategy for thermally induced mode instability suppression. High Power Laser Sci. Eng., 6, e57(2018).

    [12] Z. Wang, P. Yan, Y. Huang, J. Tian, C. Cai, D. Li, Y. Yi, Q. Xiao, M. Gong. An efficient 4-kW level random fiber laser based on a tandem-pumping scheme. IEEE Photon. Technol. Lett., 31, 817-820(2019).

    [13] E. Stiles. New developments in IPG fiber laser technology. Proceedings of the 5th International Workshop on Fiber Lasers(2009).

    [14] C. Wirth, O. Schmidt, A. Kliner, T. Schreiber, R. Eberhardt, A. Tunnermann. High-power tandem pumped fiber amplifier with an output power of 2.9 kW. Opt. Lett., 36, 3061-3063(2011).

    [15] G. Gu, Z. Liu, F. Kong, H. Tam, R. K. Shori, L. Dong. Highly efficient ytterbium-doped phosphosilicate fiber lasers operating below 1020 nm. Opt. Express, 23, 17693-17700(2015).

    [16] S. Suzuki, H. A. McKay, X. Peng, L. Fu, L. Dong. Highly ytterbium-doped silica fibers with low photo-darkening. Opt. Express, 17, 9924-9932(2009).

    [17] M. Cavillon, C. Kucera, T. W. Hawkins, N. Yu, P. Dragic, J. Ballato. Ytterbium-doped multicomponent fluorosilicate optical fibers with intrinsically low optical nonlinearities. Opt. Mater. Express, 8, 744-760(2018).

    [18] N. Yu, M. Cavillon, C. Kucera, T. W. Hawkins, J. Ballato, P. Dragic. Less than 1% quantum defect fiber lasers via ytterbium-doped multicomponent fluorosilicate optical fiber. Opt. Lett., 43, 3096-3099(2018).

    [19] Y. Feng. Raman Fiber Lasers(2017).

    [20] D. Georgiev, V. P. Gapontsev, A. G. Dronov, M. Y. Vyatkin, A. B. Rulkov, S. V. Popov, J. R. Taylor. Watts-level frequency doubling of a narrow line linearly polarized Raman fiber laser to 589 nm. Opt. Express, 13, 6772-6776(2005).

    [21] L. Zhang, H. Jiang, X. Yang, W. Pan, S. Cui, Y. Feng. Nearly-octave wavelength tuning of a continuous wave fiber laser. Sci. Rep., 7, 42611(2017).

    [22] R. Cao, G. Chen, Y. Chen, Z. Zhang, X. Lin, B. Dai, L. Yang, J. Li. Effective suppression of the photodarkening effect in high-power Yb-doped fiber amplifiers by H2 loading. Photon. Res., 8, 288-295(2020).

    [23] V. R. Supradeepa, J. W. Nicholson. Power scaling of high-efficiency 1.5 μm cascaded Raman fiber lasers. Opt. Lett., 38, 2538-2541(2013).

    [24] Y. Chen, T. Yao, L. Huang, H. Xiao, J. Leng, P. Zhou. 2 kW high-efficiency Raman fiber amplifier based on passive fiber with dynamic analysis on beam cleanup and fluctuation. Opt. Express, 28, 3495-3504(2020).

    [25] E. Belanger, M. Bernier, D. Faucher, D. Cote, R. Vallee. High-power and widely tunable all-fiber Raman laser. J. Lightwave Technol., 26, 1696-1701(2008).

    [26] E. M. Dianov, A. M. Prokhorov. Medium-power CW Raman fiber lasers. IEEE J. Sel. Top. Quantum Electron., 6, 1022-1028(2000).

    [27] J. Dong, L. Zhang, J. Zhou, W. Pan, X. Gu, Y. Feng. More than 200 W random Raman fiber laser with ultra-short cavity length based on phosphosilicate fiber. Opt. Lett., 44, 1801-1804(2019).

    [28] N. S. Kim, M. Prabhu, C. Li, J. Song, K. Ueda. 1239/1484 nm cascaded phosphosilicate Raman fiber laser with CW output power of 1.36 W at 1484 nm pumped by CW Yb-doped double-clad fiber laser at 1064 nm and spectral. Opt. Commun., 176, 219-222(2000).

    [29] S. A. Babin, I. D. Vatnik, A. Y. Laptev, M. M. Bubnov, E. M. Dianov. High-efficiency cascaded Raman fiber laser with random distributed feedback. Opt. Express, 22, 24929-24934(2014).

    [30] I. A. Lobach, S. I. Kablukov, S. A. Babin. Linearly polarized cascaded Raman fiber laser with random distributed feedback operating beyond 1.5 μm. Opt. Lett., 42, 3526-3529(2017).

    [31] J. Song, J. Xu, Y. Zhang, J. Ye, P. Zhou. Phosphosilicate fiber-based dual-wavelength random fiber laser with flexible power proportion and high spectral purity. Opt. Express, 27, 23095-23102(2019).

    [32] H. Tanaka, H. Shintani. Universal link between the boson peak and transverse phonons in glass. Nat. Mater., 7, 870-877(2008).

    [33] S. N. Taraskin, S. R. Elliott. Nature of vibrational excitations in vitreous silica. Phys. Rev. B, 56, 8605-8622(1997).

    [34] S. N. Taraskin, Y. L. Loh, G. Natarajan, S. R. Elliott. Origin of the Boson peak in systems with lattice disorder. Phys. Rev. Lett., 86, 1255-1258(2001).

    [35] V. L. Gurevich, D. A. Parshin, H. R. Schober. Anharmonicity, vibrational instability, and the Boson peak in glasses. Phys. Rev. B, 67, 094203(2003).

    [36] D. A. Parshin, H. R. Schober, V. L. Gurevich. Vibrational instability, two-level systems, and the boson peak in glasses. Phys. Rev. B, 76, 064206(2007).

    [37] A. Marruzzo, W. Schirmacher, A. Fratalocchi, G. Ruocco. Heterogeneous shear elasticity of glasses: the origin of the boson peak. Sci. Rep., 3, 1407(2013).

    [38] R. Shuker, R. W. Gammon. Raman-scattering selection-rule breaking and the density of states in amorphous materials. Phys. Rev. Lett., 25, 222-225(1970).

    [39] J. Schroeder, W. Wu, J. L. Apkarian, M. Lee, L. Hwa, C. T. Moynihan. Raman scattering and boson peaks in glasses: temperature and pressure effects. J. Non-Cryst. Solids, 349, 88-97(2004).

    [40] J. Ye, J. Xu, Y. Zhang, J. Song, J. Leng, P. Zhou. Spectrum-manipulable hundred-watt-level high power superfluorescent fiber source. J. Lightwave Technol., 37, 3113-3118(2019).

    [41] J. Song, H. Wu, J. Ye, H. Zhang, J. Xu, P. Zhou, Z. Liu. Investigation on extreme frequency shift in silica fiber-based high-power Raman fiber laser. High Power Laser Sci. Eng., 6, e28(2018).

    [42] T. Sylvestre, H. Maillotte, E. Lantz, P. Tchofo Dinda. Raman-assisted parametric frequency conversion in a normally dispersive single-mode fiber. Opt. Lett., 24, 1561-1563(1999).

    [43] P. Tchofo, E. Sève, G. Millot, T. Sylvestre, H. Maillote, E. Lantz. Raman-assisted three-wave mixing of non-phase-matched waves in optical fibres: application to wide-range frequency conversion. Opt. Commun., 192, 107-121(2001).

    [44] G. P. Agrawal. Nonlinear Fiber Optics(2013).

    [45] J. Dong, L. Zhang, H. Jiang, X. Yang, W. Pan, S. Cui, X. Gu, Y. Feng. High order cascaded Raman random fiber laser with high spectral purity. Opt. Express, 26, 5275-5280(2018).

    [46] Y. Zhang, J. Song, J. Ye, J. Xu, T. Yao, P. Zhou. Tunable random Raman fiber laser at 1.7 μm region with high spectral purity. Opt. Express, 27, 28800-28807(2019).

    [47] V. Balaswamy, S. Ramachandran, V. R. Supradeepa. High-power, cascaded random Raman fiber laser with near complete conversion over wide wavelength and power tuning. Opt. Express, 27, 9725-9732(2019).

    CLP Journals

    [1] Xiaoya Ma, Jiangming Xu, Jun Ye, Yang Zhang, Liangjin Huang, Tianfu Yao, Jinyong Leng, Zhiyong Pan, Pu Zhou. Cladding-pumped Raman fiber laser with 0.78% quantum defect enabled by phosphorus-doped fiber[J]. High Power Laser Science and Engineering, 2022, 10(2): 020000e8

    Yang Zhang, Jiangming Xu, Jun Ye, Jiaxin Song, Tianfu Yao, Pu Zhou. Ultralow-quantum-defect Raman laser based on the boson peak in phosphosilicate fiber[J]. Photonics Research, 2020, 8(7): 1155
    Download Citation