• High Power Laser and Particle Beams
  • Vol. 33, Issue 5, 051001 (2021)
Yudong Lian1、2、3, Yuhe Wang1、2, Yuqin Zhang1、2, Shiwei Han1、2, Yang Yu1、2, Xuan Qi1、2, Nannan Luan3, Zhenxu Bai1、2、3, Yulei Wang1、2、3, and Zhiwei Lü1、2、3
Author Affiliations
  • 1Center for Advanced Laser Technology, Hebei University of Technology, Tianjin 300401, China
  • 2Hebei Key Laboratory of Advanced Laser Technology and Equipment, Tianjin 300401, China
  • 3Tianjin Key Laboratory of Electronic Materials and Devices, Tianjin 300401, China
  • show less
    DOI: 10.11884/HPLPB202133.210006 Cite this Article
    Yudong Lian, Yuhe Wang, Yuqin Zhang, Shiwei Han, Yang Yu, Xuan Qi, Nannan Luan, Zhenxu Bai, Yulei Wang, Zhiwei Lü. Research progress of stimulated Brillouin scattering pulse compression technique[J]. High Power Laser and Particle Beams, 2021, 33(5): 051001 Copy Citation Text show less
    References

    [3] Perkins L J, Betti R, LaFortune K N, et al. Shock ignition: a new approach to high gain inertial confinement fusion on the National Ignition Facility[J]. Physical Review Letters, 103, 045004(2009).

    [4] Betti R, Zhou C D, Anderson K S, et al. Shock ignition of thermonuclear fuel with high areal density[J]. Physical Review Letters, 98, 155001(2007).

    [5] Quinlan F, Gee S, Ozharar S, et al. Ultralow-jitter and -amplitude-noise semiconductor-based actively mode-locked laser[J]. Optics Letters, 31, 2870-2872(2006).

    [6] Yang Shiquan, Ponomarev E A, Bao Xiaoyi. 40-GHz transform-limited pulse generation from FM oscillation fiber laser with external cavity chirp compensation[J]. IEEE Photonics Technology Letters, 16, 1631-1633(2004).

    [10] Kibler B, Fischer R, Lacourt P A, et al. Optimised one-step compression of femtosecond fibre laser soliton pulses around 1550 nm to below 30 fs in highly nonlinear fibre[J]. Electronics Letters, 43, 915-916(2007).

    [11] Kibler B, Billet C, Lacourt P A, et al. All-fiber source of 20-fs pulses at 1550 nm using two-stage linear-nonlinear compression of parabolic similaritons[J]. IEEE Photonics Technology Letters, 18, 1831-1833(2006).

    [12] Ma Yuanyuan, Hou Shanglin, Wang Daobin, et al. Effects of power shape of pump light on pulse compression based on stimulated Brillouin Scattering[C]Progress in Electromagics Research SymposiumSpring. St. Petersburg, Russia, IEEE, 2018: 17651767.

    [14] Lu Zhiwei, Gao Wei, He Weiming, et al. High amplification and low noise achieved by a double-stage non-collinear Brillouin amplifier[J]. Optics Express, 17, 10675-10680(2009).

    [15] Gao Wei, Hu Xiaobo, Sun Di, et al. Simultaneous generation and Brillouin amplification of a dark hollow beam with a liquid-core optical fiber[J]. Optics Express, 20, 20715-20720(2012).

    [16] Bel’dyugin I M, Efimkov V F, Mikhailov S I, et al. Amplification of weak Stokes signals in the transient regime of stimulated Brillouin scattering[J]. Journal of Russian Laser Research, 26, 1-12(2005).

    [17] Bai Zhenxu, Yuan Hang, Liu Zhaohong, et al. Stimulated Brillouin scattering materials, experimental design and applications: A review[J]. Optical Materials, 75, 626-645(2018).

    [18] Zhang Pingping, Hu Shuling, Chen Shuying, et al. A high-efficiency Brillouin fiber ring laser[J]. Chinese Optics Letters, 7, 495-497(2009).

    [20] Wang Shuangyi, Lu Zhiwei, Lin Dianyang, et al. Investigation of serial coherent laser beam combination based on Brillouin amplification[J]. Laser and Particle Beams, 25, 79-83(2007).

    [21] Wang Y L, Lü Z W, Wang S Y, et al. Investigation on efficiency of non-collinear serial laser beam combination based on Brillouin amplification[J]. Laser and Particle Beams, 27, 651-655(2009).

    [22] Guo Qi, Lu Zhiwei, Wang Yulei. Highly efficient Brillouin amplification of strong Stokes seed[J]. Applied Physics Letters, 96, 221107(2010).

    [23] Galindez-Jamioy C A, López-Higuera J M. Brillouin distributed fiber sensors: an overview and applications[J]. Journal of Sensors, 2012, 204121(2012).

    [24] Xu Jinlong, Dong Yongkang, Zhang Zhaohui, et al. Full scale strain monitoring of a suspension bridge using high performance distributed fiber optic sensors[J]. Measurement Science and Technology, 27, 124017(2016).

    [25] Dong Yongkang, Chen Liang, Bao Xiaoyi. Time-division multiplexing-based BOTDA over 100 km sensing length[J]. Optics Letters, 36, 277-279(2011).

    [26] Hill K O, Kawasaki B S, Johnson D C. CW Brillouin laser[J]. Applied Physics Letters, 28, 608-609(1976).

    [27] Kong H J, Yoon J W, Shin J S, et al. Long-term stabilized two-beam combination laser amplifier with stimulated Brillouin scattering mirrors[J]. Applied Physics Letters, 92, 021120(2008).

    [28] Ostermeyer M, Kong H J, Kovalev V I, et al. Trends in stimulated Brillouin scattering and optical phase conjugation[J]. Laser and Particle Beams, 26, 297-362(2008).

    [29] Meng Hui, Eichler H J. Nd: YAG laser with a phase-conjugating mirror based on stimulated Brillouin scattering in SF6 gas[J]. Optics Letters, 16, 569-571(1991).

    [30] Song K Y, Abedin K S, Hotate K, et al. Highly efficient Brillouin slow and fast light using As2Se3 chalcogenide fiber[J]. Optics Express, 14, 5860-5865(2006).

    [31] Liu Jianguo, Cheng T H, Yeo Y K, et al. Stimulate Brillouin scattering based broadband tunable slow-light conversion in a highly nonlinear photonic crystal fiber[J]. Journal of Lightwave Technology, 27, 1279-1285(2009).

    [32] Cheng Tonglei, Cherif R, Liao Meisong, et al. Stimulated Brillouin scattering of higher-order acoustic modes in four-core tellurite microstructured optical fiber[J]. Applied Physics Express, 5, 102501(2012).

    [33] Bowers M W, Boyd R W. Phase locking via Brillouin-enhanced four-wave-mixing phase conjugation[J]. IEEE Journal of Quantum Electronics, 34, 634-644(1998).

    [34] Andreev N F, Palashov O V, Pasmanik G A, et al. Four-channel pulse-periodic Nd: YAG laser with diffraction-limited output radiation[J]. Quantum Electronics, 27, 565-569(1997).

    [35] Scott A M, Ridley K D. A review of Brillouin-enhanced four-wave mixing[J]. IEEE Journal of Quantum Electronics, 25, 438-459(1989).

    [36] Liu Hongxin, Li Yongliang, Yang Chao, et al. 1.35 ns SBS laser pulse[J]. Optik, 184, 394-398(2019).

    [37] Bai Zhenxu, Wang Yulei, Lu Zhiwei, et al. High compact, high quality single longitudinal mode hundred picoseconds laser based on stimulated Brillouin scattering pulse compression[J]. Applied Sciences, 6, 29(2016).

    [40] Yuan Hang, Wang Yulei, Lu Zhiwei, et al. Fluctuation initiation of Stokes signal and its effect on stimulated Brillouin scattering pulse compression[J]. Optics Express, 25, 14378-14388(2017).

    [41] Feng Chengyong, Xu Xiaozhen, Diels J C. Generation of 300 ps laser pulse with 1.2 J energy by stimulated Brillouin scattering in water at 532 nm[J]. Optics Letters, 39, 3367-3370(2014).

    [42] Liu Zhaohong, Wang Yulei, Wang Yirui, et al. Generation of high-energy 284 ps laser pulse without tail modulation by stimulated Brillouin scattering[J]. Chinese Optics Letters, 14, 091901(2016).

    [43] Xu Xiaozhen, Feng Chengyong, Diels J C. Optimizing sub-ns pulse compression for high energy application[J]. Optics Express, 22, 13904-13915(2014).

    [44] Feng Chengyong, Xu Xiaozhen, Diels J C. High-energy sub-phonon lifetime pulse compression by stimulated Brillouin scattering in liquids[J]. Optics Express, 25, 12421-12434(2017).

    [45] Yuan Hang, Wang Yulei, Lü Zhiwei, et al. Theoretical investigation on 200 ps laser pulses amplification based on stimulated Brillouin scattering[J]. Acta Optica Sinica, 36, 0914003(2016).

    [46] Damzen M J, Hutchinson H. Laser pulse compression by stimulated Brillouin scattering in tapered waveguides[J]. IEEE Journal of Quantum Electronics, 19, 7-14(1983).

    [47] Hon D T. Pulse compression by stimulated Brillouin scattering[J]. Optics Letters, 5, 516-518(1980).

    [48] Davydov M A, Shipilov K F, Shmaonov T A. Formation of highly compressed stimulated Brillouin scattering pulses in liquids[J]. Soviet Journal of Quantum Electronics, 16, 1402-1403(1986).

    [49] Neshev D, Velchev I, Majewski W A, et al. SBS pulse compression to 200 ps in a compact single-cell setup[J]. Applied Physics B, 68, 671-675(1999).

    [51] Mitra A, Yoshida H, Fujita H, et al. Sub nanosecond pulse generation by stimulated Brillouin scattering using FC-75 in an integrated setup with laser energy up to 1.5 J[J]. Japanese Journal of Applied Physics, 45, 1607-1611(2006).

    [52] Bai Zhenxu, Wang Yulei, Lü Zhiwei, et al. Efficient KDP frequency doubling SBS pulse compressed 532 nm hundred picosecond laser[J]. Optik, 127, 9201-9205(2016).

    [53] Schiemann S, Ubachs W, Hogervorst W. Efficient temporal compression of coherent nanosecond pulses in a compact SBS generator-amplifier setup[J]. IEEE Journal of Quantum Electronics, 33, 358-366(1997).

    [54] Liu Zhaohong, Wang Yulei, Wang Hongli, et al. Pulse temporal compression by two-stage stimulated Brillouin scattering and laser-induced breakdown[J]. Applied Physics Letters, 110, 241108(2017).

    [55] Bai Zhenxu, Wang Yulei, Lu Zhiwei, et al. Demonstration of an ultraviolet stimulated Brillouin scattering pulse compressed hundred picosecond laser in LiB3O5 crystals[J]. Journal of Optics, 19, 085502(2017).

    [56] Fedosejevs R, Offenberger A. Subnanosecond pulses from a KrF laser pumped SF6 Brillouin amplifier[J]. IEEE Journal of Quantum Electronics, 21, 1558-1562(2003).

    [57] Dane C B, Neuman W A, Hackel L A. High-energy SBS pulse compression[J]. IEEE Journal of Quantum Electronics, 30, 1907-1915(1994).

    [58] Yuan Hang, Wang Yulei, Lü Zhiwei, et al. Measurement of Brillouin gain coefficient in fluorocarbon liquid[J]. Chinese Optics Letters, 14, 041902(2016).

    [59] Feng Chengyong, Xu Xiaozhen, Diels J C. Multijoule, sub200ps laser pulse generation via SBS subphonon lifetime pulse compression[C]Proceedings of 2017 Conference on Lasers ElectroOptics. San Jose, Califnia: IEEE, 2017: 12.

    [60] Xu Xiaozhen, Feng Chengyong, Diels J C. High energy pulse compression through twopulse interaction mediated by stimulated Brillouin scattering in liquid fluocarbon[C]Proceedings of CLEO: 2013. San Jose, Califnia: IEEE, 2013: 12.

    [61] Liu Zhaohong, Wang Yulei, Zhang Hengkang, et al. A 97ps laserpulse generation by twostage stimulated Brillouin Raman scattering[C]Proceedings of 2017 Conference on Lasers ElectroOptics. San Jose, Califnia: IEEE, 2017: 12.

    [62] Liu Zhaohong, Wang Yulei, Bai Zhenxu, et al. Pulse compression to one-tenth of phonon lifetime using quasi-steady-state stimulated Brillouin scattering[J]. Optics Express, 26, 23051-23060(2018).

    [63] Bai Zhenxu, Wang Yulei, Lü Zhiwei, et al. Research progress of serial laser beam combination based on stimulated Brillouin amplification[J]. Laser & Optoelectronics Progress, 52, 110004(2015).

    [64] Zhu Xuehua, Lü Zhiwei, Wang Yulei. High stability, single frequency, 300 mJ, 130 ps laser pulse generation based on stimulated Brillouin scattering pulse compression[J]. Laser and Particle Beams, 33, 11-15(2014).

    [65] Yoshida H, Kmetik V, Fujita H, et al. Heavy fluorocarbon liquids for a phase-conjugated stimulated Brillouin scattering mirror[J]. Applied Optics, 36, 3739-3730(1997).

    [67] Hasi Wuliji, Lü Zhiwei, Li Qiang, et al. Study on two-cell stimulated Brillouin scattering system with mixture medium[J]. Science in China Series G: Physics, Mechanics and Astronomy, 50, 144-151(2007).

    [70] Yuan Hang, Wang Yulei, Lü Zhiwei, et al. Small-scale self-focusing of 200 ps laser pulses in Brillouin amplification[J]. Chinese Physics B, 24, 094210(2015).

    [71] Hasi Wujili, Lü Zhiwei, He Weiming, et al. Experimental investigation on the improvement of SBS characteristics by purifying the mediums[J]. Chinese Optics Letters, 2, 718-721(2004).

    [72] Yoshida H, Fujita H, Nakatsuka M, et al. Temporal compression by stimulated Brillouin scattering of Q-switched pulse with fused-quartz and fused-silica glass from 1064 nm to 266 nm wavelength[J]. Laser and Particle Beams, 25, 481-488(2007).

    [73] Yoshida H, Fujita H, Nakatsuka M, et al. Compact temporal-pulse-compressor used in fused-silica glass at 1064 nm wavelength[J]. Japanese Journal of Applied Physics, 46, L80-L82(2007).

    [74] Marcus G, Pearl S, Pasmanik G. Stimulated Brillouin scattering pulse compression to 175 ps in a fused quartz at 1064 nm[J]. Journal of Applied Physics, 103, 103105(2008).

    [75] Wang Hongli, Cha S, Wang Yulei, et al. SBS pulse compression using bulk fused silica by diode-pumped solid-state lasers at 1 kHz repetition rate[J]. Optics & Laser Technology, 128, 106258(2020).

    [77] Kuwahara K, Takahashi E, Matsumoto Y, et al. Short-pulse generation by saturated KrF laser amplification of a steep Stokes pulse produced by two-step stimulated Brillouin scattering[J]. Journal of the Optical Society of America B, 17, 1943-1947(2000).

    [80] Dement’ev A S, Demin I, Murauskas E, et al. Compression of pulses during their amplification in the field of a focused counterpropagating pump pulse of the same frequency and width in media with electrostriction nonlinearity[J]. Quantum Electronics, 41, 153-159(2011).

    [82] Kuz’min A A, Kulagin O V, Rodchenkov V I. Formation of nanosecond SBS-compressed pulses for pumping an ultra-high power parametric amplifier[J]. Quantum Electronics, 48, 344-350(2018).

    [83] Park H, Lim C, Yoshida H, et al. Measurement of stimulated Brillouin scattering characteristics in heavy fluorocarbon liquids and perfluoropolyether liquids[J]. Japanese Journal of Applied Physics, 45, 5073-5075(2006).

    [84] Kmetik V, Kanabe T, Fujita H. Optical absorption in fluorocarbon liquids for the high energy stimulated Brillouin scattering phase conjugation and compression[J]. The Review of Laser Engineering, 26, 322-327(1998).

    [85] Yoshida H, Hatae T, Fujita H, et al. A high-energy 160-ps pulse generation by stimulated Brillouin scattering from heavy fluorocarbon liquid at 1064 nm wavelength[J]. Optics Express, 17, 13654-13662(2009).

    [86] Kuwahara K, Takahashi E, Matsumoto Y, et al. Highintensity pulse generation by saturated amplification of Stokes pulse with steep leading edge[C]Proceedings of SPIE 4424, ECLIM 2000: 26th European Conference on Laser Interaction with Matter. Prague, Czech Republic: SPIE, 2000.

    [87] Kmetik V, Fiedorowicz H, Andreev A A, et al. Reliable stimulated Brillouin scattering compression of Nd: YAG laser pulses with liquid fluorocarbon for long-time operation at 10 Hz[J]. Applied Optics, 37, 7085-7090(1998).

    [88] Hasi W L J, Qiao Z, Cheng S X, et al. Characteristics of SBS hundreds picosecond pulse compression and influence of energy on pulse stability in FC-770[J]. Optics Communications, 311, 375-379(2013).

    [89] Hasi W L J, Wang X Y, Cheng S X, et al. Research on the compression properties of FC-3283 and FC-770 for generating pulse of hundreds picoseconds[J]. Laser and Particle Beams, 31, 301-305(2013).

    [90] Guo X Y, Hasi W L J, Zhong Z M, et al. Research on the SBS mediums used in high peak power laser system and their selection principle[J]. Laser and Particle Beams, 30, 525-530(2012).

    [92] Hasi Wuliji, Zhong Zhaoming, Qiao Zhi, et al. The effects of medium phonon lifetime on pulse compression ratio in the process of stimulated Brillouin scattering[J]. Optics Communications, 285, 3541-3544(2012).

    [93] Hasi Wuliji, Zhao Hang, Lin Dianyang, et al. Characteristics of perfluorinated amine media for stimulated Brillouin scattering in hundreds of picoseconds pulse compression at 532 nm[J]. Chinese Optics Letters, 13, 061901(2015).

    [94] Yuan H, Lu Z W, Wang Y L, et al. Hundred picoseconds laser pulse amplification based on scalable two-cells Brillouin amplifier[J]. Laser and Particle Beams, 32, 369-374(2014).

    [95] Yuan Hang, Wang Yulei, Zhu Chengyu, et al. Investigation of sub-phonon lifetime pulse amplification in active frequency matching stimulated Brillouin scattering[J]. Optics Express, 27, 16661-16670(2019).

    [96] Chalus O, Diels J C. Lifetime of fluorocarbon for high-energy stimulated Brillouin scattering[J]. Journal of the Optical Society of America B, 24, 606-608(2007).

    [97] Wang Hongli, Cha S, Kong Hongjin, et al. Sub-nanosecond stimulated Brillouin scattering pulse compression using HT270 for kHz repetition rate operation[J]. Optics Express, 27, 29789-29802(2019).

    [98] Tomov I V, Fedosejevs R, McKen D C D. Stimulated Brillouin scattering of KrF laser radiation in dichlorodifluoromethane[J]. IEEE Journal of Quantum Electronics, 21, 9-11(1985).

    [104] Kong Hongjin, Beak D H. Prepulse technique f preserving the pulse shape of the stimulated Brillouin scattering[C]Proceedings of SPIE 6454, High EnergyAverage Power Lasers Intense Beam Applications. San Jose, Califnia, United States: SPIE, 2007: 64540E.

    [106] Liu Zhaohong, Wang Yulei, Wang Yirui, et al. Pulse-shape dependence of stimulated Brillouin scattering pulse compression to sub-phonon lifetime[J]. Optics Express, 26, 5701-5710(2018).

    [110] Brillouin L. Diffussion of light and X-rays by a homogeneous transparent bady[J]. Annales of Physique, 9, 88-122(1922).

    [111] Chiao R Y, Townes C H, Stoicheff B P. Stimulated Brillouin scattering and coherent generation of intense hypersonic waves[J]. Physical Review Letters, 12, 592-595(1964).

    [112] Brewer R G, Rieckhoff K E. Stimulated Brillouin scattering in liquids[J]. Physical Review Letters, 13, 334-336(1964).

    [113] Ippen E P, Stolen R H. Stimulated Brillouin scattering in optical fibers[J]. Applied Physics Letters, 21, 539-541(1972).

    [114] Hon D T. Applications of wavefront reversal by stimulated Brillouin scattering[J]. Optical Engineering, 21, 212252(1982).

    [115] Kubeček V, Hamal K, Procházka I, et al. Compression of the Nd: YAP laser pulse by two-stage stimulated backward scattering[J]. Optics Communications, 73, 251-256(1989).

    [116] Velchev I, Neshev D, Hogervorst W, et al. Pulse compression to the subphonon lifetime region by half-cycle gain in transient stimulated Brillouin scattering[J]. IEEE Journal of Quantum Electronics, 35, 1812-1816(1999).

    [117] Kong Hongjin, Lee S K, Lee D W, et al. Phase control of a stimulated Brillouin scattering phase conjugate mirror by a self-generated density modulation[J]. Applied Physics Letters, 86, 051111(2005).

    [118] Yuan Hang, Wang Yulei, Lu Zhiwei, et al. Active frequency matching in stimulated Brillouin amplification for production of a 2.4 J, 200 ps laser pulse[J]. Optics Letters, 43, 511-514(2018).

    [120] Wang Hongli, Cha S, Kong Hongjin, et al. Rotating off-centered lens in SBS phase conjugation mirror for high-repetition-rate operation[J]. Optics Express, 27, 9895-9905(2019).

    [121] reev N, Kulagin O P, Palashov O V, et al. SBS of repetitively pulsed radiation possibility of increasing the pump average power[C]Proceedings of SPIE 2633, Solid State Lasers f Application to Inertial Confinement Fusion. Monterey, CA, United States: SPIE, 1995.

    [122] Buzyalis R R, Dementjev A S, Kosenko E K. Formation of subnanosecond pulses by stimulated Brillouin scattering of radiation from a pulse-periodic YAG: Nd laser[J]. Soviet Journal of Quantum Electronics, 15, 1335-1337(1985).

    [123] Gowers C W, Brown B W, Fajemirokun H, et al. Recent developments in LIDAR Thomson scattering measurements on JET (invited)[J]. Review of Scientific Instruments, 66, 471-475(1995).

    [124] Kim H J, Lee E G, Kim C Y. A high-multi target resolution focal plane array-based laser detection and ranging sensor[J]. Sensors, 19, 1210(2019).

    [126] Yu Tianbiao, Bao Yiting. Research on manufacturing technology of thin-walled parts of Fe105 metal based on laser cladding[J]. Journal of Physics: Conference Series, 1187, 032043(2019).

    [127] Kang Zhijun, Fan Zhongwei, Huang Yutao, et al. High-repetition-rate, high-pulse-energy, and high-beam-quality laser system using an ultraclean closed-type SBS-PCM[J]. Optics Express, 26, 6560-6571(2018).

    [128] Bourne O L, Alcock A J. Simplified technique for subnanosecond pulse generation and injection mode-locking of a XeCl laser[J]. Applied Physics B, 36, 181-185(1985).

    [129] Zhang Fangpei, Lou Qihong, Dong Jingxing, et al. Generation of 1.5~12 ns width-tunable 532 nm pulses by adopting laser-induced plasma shutter technique[J]. Optik, 120, 237-241(2009).

    [130] Hasi W L J, Lu Z W, Lu H H, et al. Investigation on pulse compression based on stimulated Brillouin scattering and optical breakdown[J]. Applied Physics B, 98, 397-400(2010).

    [131] Long Xin, Zou Weiwen, Chen Jianping. All-optical pulse compression of broadband microwave signal based on stimulated Brillouin scattering[J]. Optics Express, 24, 5162-5171(2016).

    [132] Long Xin, Zou Weiwen, Ji Yi, et al. Accurate measurement of time delay of broadband microwave signal via high-repetition-rate pulse train probing SBS based all-optical pulse compression[J]. Optics Express, 25, 33330-33337(2017).

    [133] Ji Yi, Zou Weiwen, Long Xin, et al. Signal-to-noise ratio enhancement of stimulated Brillouin scattering based pulse compression of an ultrabroad microwave signal by use of a dispersion compensation fiber[J]. Optics Letters, 42, 2980-2983(2017).

    [134] Chen Xudong, Chang Chengcheng, Pu Jixiong. Stimulated Brillouin scattering phase conjugation of light beams carrying orbit angular momentum[J]. Chinese Optics Letters, 15, 030006(2017).

    [135] Gao Wei, Mu Chunyuan, Li Hongwei, et al. Parametric amplification of orbital angular momentum beams based on light-acoustic interaction[J]. Applied Physics Letters, 107, 041119(2015).

    [136] Zhu Zhihan, Gao Wei, Mu Chunyuan, et al. Reversible orbital angular momentum photon–phonon conversion[J]. Optica, 3, 212-217(2016).

    CLP Journals

    [1] Feng Lu, Zhenzhong Wang, Xuepeng Huang, Pengli Lei. Modal analysis and mid-spatial-frequency errors suppression of 6-DOF bonnet polishing robot[J]. High Power Laser and Particle Beams, 2022, 34(11): 119001

    Yudong Lian, Yuhe Wang, Yuqin Zhang, Shiwei Han, Yang Yu, Xuan Qi, Nannan Luan, Zhenxu Bai, Yulei Wang, Zhiwei Lü. Research progress of stimulated Brillouin scattering pulse compression technique[J]. High Power Laser and Particle Beams, 2021, 33(5): 051001
    Download Citation