• Nano-Micro Letters
  • Vol. 16, Issue 1, 240 (2024)
Jia Xu1,2,†, Bei Li2,†, Zheng Ma1, Xiao Zhang2..., Chunling Zhu1,*, Feng Yan2,**, Piaoping Yang1 and Yujin Chen1,2,***|Show fewer author(s)
Author Affiliations
  • 1College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, People’s Republic of China
  • 2Key Laboratory of In-Fiber Integrated Optics, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, People’s Republic of China
  • show less
    DOI: 10.1007/s40820-024-01440-2 Cite this Article
    Jia Xu, Bei Li, Zheng Ma, Xiao Zhang, Chunling Zhu, Feng Yan, Piaoping Yang, Yujin Chen. Multifunctional Film Assembled from N-Doped Carbon Nanofiber with Co–N4–O Single Atoms for Highly Efficient Electromagnetic Energy Attenuation[J]. Nano-Micro Letters, 2024, 16(1): 240 Copy Citation Text show less
    References

    [1] F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S. Man Hong et al., Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353, 1137–1140 (2016).

    [2] A. Iqbal, F. Shahzad, K. Hantanasirisakul, M.K. Kim, J. Kwon et al., Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene). Science 369, 446–450 (2020).

    [3] Y. Li, X. Chen, Q. Wei, W. Liu, Y. Zhang et al., Oxygen-sulfur Co-substitutional Fe@C nanocapsules for improving microwave absorption properties. Sci. Bull. 65, 623–630 (2020).

    [4] M. Cheng, M. Ying, R. Zhao, L. Ji, H. Li et al., Transparent and flexible electromagnetic interference shielding materials by constructing sandwich AgNW@MXene/wood composites. ACS Nano 16, 16996–17007 (2022).

    [5] X. Zuo, H. Zhang, C. Zhou, Y. Zhao, H. Huang et al., Hierarchical and porous structures of carbon nanotubes-anchored MOF derivatives bridged by carbon nanocoils as lightweight and broadband microwave absorbers. Small 19, e2301992 (2023).

    [6] Y. Zhao, H. Qi, X. Dong, Y. Yang, W. Zhai, Customizable resilient multifunctional graphene aerogels via blend-spinning assisted freeze casting. ACS Nano 17, 15615–15628 (2023).

    [7] S. Yu, W. Guo, Z. Zhou, Y. Li, J. Qiu, Rough-endoplasmic-reticulum-like hierarchical composite structures for efficient mechanical-electromagnetic wave-energy attenuation. Adv. Funct. Mater. 34, 2312835 (2024).

    [8] Y. Li, Y. Liao, L. Ji, C. Hu, Z. Zhang et al., Quinary high-entropy-alloy@graphite nanocapsules with tunable interfacial impedance matching for optimizing microwave absorption. Small 18, e2107265 (2022).

    [9] P. Zhu, X. Xiong, D. Wang, Y. Li, Advances and regulation strategies of the active moiety in dual-atom site catalysts for efficient electrocatalysis. Adv. Energy Mater. 13, 2300884 (2023).

    [10] M. Duan, C. Huang, G. Zhang, H. Shi, P. Zhang et al., Spin-state conversion by asymmetrical orbital hybridization in Ni-doped Co3O4 to boost singlet oxygen generation for microbial disinfection. Angew. Chem. Int. Ed. 63, e202318924 (2024).

    [11] P. Yang, J. Li, D.G. Vlachos, S. Caratzoulas, Tuning active site flexibility by defect engineering of graphene ribbon edge-hosted Fe-N3 sites. Angew. Chem. Int. Ed. 63, e202311174 (2024).

    [12] X. Wan, X. Liu, Y. Li, R. Yu, L. Zheng et al., Fe–N–C electrocatalyst with dense active sites and efficient mass transport for high-performance proton exchange membrane fuel cells. Nat. Catal. 2, 259–268 (2019).

    [13] J. Xi, H.S. Jung, Y. Xu, F. Xiao, J.W. Bae et al., Synthesis strategies, catalytic applications, and performance regulation of single-atom catalysts. Adv. Funct. Mater. 31, 2008318 (2021).

    [14] J. Xu, M. Liu, X. Zhang, B. Li, X. Zhang et al., Atomically dispersed cobalt anchored on N-doped graphene aerogels for efficient electromagnetic wave absorption with an ultralow filler ratio. Appl. Phys. Rev. 9, 011402 (2022).

    [15] Y. Shi, Z. Ma, X. Zhang, F. Yan, Y. Zhao et al., Flexible film constructed by asymmetrically-coordinated La1N4Cl1 moieties on interconnected nitrogen-doped graphene nanocages for high-efficiency electromagnetic wave absorption. Adv. Funct. Mater. 34, 2313483 (2024).

    [16] X. Zhang, B. Li, J. Xu, X. Zhang, Y. Shi et al., Metal ions confined in periodic pores of MOFs to embed single-metal atoms within hierarchically porous carbon nanoflowers for high-performance electromagnetic wave absorption. Adv. Funct. Mater. 33, 2210456 (2023).

    [17] H. Liu, X. Li, X. Zhao, M. Zhang, X. Liu et al., Large annular dipoles bounded between single-atom Co and Co cluster for clarifying electromagnetic wave absorbing mechanism. Adv. Funct. Mater. 33, 2304442 (2023).

    [18] H. Yuan, B. Li, C. Zhu, Y. Xie, Y. Jiang et al., Dielectric behavior of single iron atoms dispersed on nitrogen-doped nanocarbon. Appl. Phys. Lett. 116, 153101 (2020).

    [19] T. Gao, R. Zhao, Y. Li, Z. Zhu, C. Hu et al., Sub-nanometer Fe clusters confined in carbon nanocages for boosting dielectric polarization and broadband electromagnetic wave absorption. Adv. Funct. Mater. 32, 2204370 (2022).

    [20] P. Cui, Q. Yang, C. Liu, Y. Wang, G. Fang et al., An N, S-anchored single-atom catalyst derived from domestic waste for environmental remediation. ACS ES&T Engg. 1, 1460–1469 (2021).

    [21] Y. Jia, Z. Xue, J. Yang, Q. Liu, J. Xian et al., Tailoring the electronic structure of an atomically dispersed zinc electrocatalyst: coordination environment regulation for high selectivity oxygen reduction. Angew. Chem. Int. Ed. 61, e202110838 (2022).

    [22] L. Shen, D. Ye, H. Zhao, J. Zhang, Perspectives for single-atom nanozymes: advanced synthesis, functional mechanisms, and biomedical applications. Anal. Chem. 93, 1221–1231 (2021).

    [23] S. Zhang, X. Ao, J. Huang, B. Wei, Y. Zhai et al., Isolated single-atom Ni–N5 catalytic site in hollow porous carbon capsules for efficient lithium–sulfur batteries. Nano Lett. 21, 9691–9698 (2021).

    [24] X. Zhang, P. Zhai, Y. Zhang, Y. Wu, C. Wang et al., Engineering single-atomic Ni-N4-O sites on semiconductor photoanodes for high-performance photoelectrochemical water splitting. J. Am. Chem. Soc. 143, 20657–20669 (2021).

    [25] M. Huang, B. Deng, X. Zhao, Z. Zhang, F. Li et al., Template-sacrificing synthesis of well-defined asymmetrically coordinated single-atom catalysts for highly efficient CO2 electrocatalytic reduction. ACS Nano 16, 2110–2119 (2022).

    [26] H. Jin, P. Li, P. Cui, J. Shi, W. Zhou et al., Unprecedentedly high activity and selectivity for hydrogenation of nitroarenes with single atomic Co1-N3P1 sites. Nat. Commun. 13, 723 (2022).

    [27] B. Chang, Z. Cao, Y. Ren, C. Chen, L. Cavallo et al., Electronic perturbation of isolated Fe coordination structure for enhanced nitrogen fixation. ACS Nano 18, 288–298 (2024).

    [28] G. Zhang, F. Tang, X. Wang, L. Wang, Y.-N. Liu, Atomically dispersed Co–S–N active sites anchored on hierarchically porous carbon for efficient catalytic hydrogenation of nitro compounds. ACS Catal. 12, 5786–5794 (2022).

    [29] J. Shi, Y. Wei, D. Zhou, L. Zhang, X. Yang et al., Introducing Co–O moiety to Co–N–C single-atom catalyst for ethylbenzene dehydrogenation. ACS Catal. 12, 7760–7772 (2022).

    [30] C. Tang, L. Chen, H. Li, L. Li, Y. Jiao et al., Tailoring acidic oxygen reduction selectivity on single-atom catalysts via modification of first and second coordination spheres. J. Am. Chem. Soc. 143, 7819–7827 (2021).

    [31] L. Zhang, N. Jin, Y. Yang, X.-Y. Miao, H. Wang et al., Advances on axial coordination design of single-atom catalysts for energy electrocatalysis: a review. Nano-Micro Lett. 15, 228 (2023).

    [32] C. Chen, Z. Chen, J. Zhong, X. Song, D. Chen et al., Regulating electronic structure of CoN4 with axial Co—S for promoting oxygen reduction and Zn-air battery performance. Nano Res. 16, 4211–4218 (2023).

    [33] N. Yu, H. Chen, J. Kuang, K. Bao, W. Yan et al., Efficient oxygen electrocatalysts with highly-exposed Co-N4 active sites on N-doped graphene-like hierarchically porous carbon nanosheets enhancing the performance of rechargeable Zn-air batteries. Nano Res. 15, 7209–7219 (2022).

    [34] Y. Hou, M. Qiu, M.G. Kim, P. Liu, G. Nam et al., Atomically dispersed nickel-nitrogen-sulfur species anchored on porous carbon nanosheets for efficient water oxidation. Nat. Commun. 10, 1392 (2019).

    [35] J. Wan, Z. Zhao, H. Shang, B. Peng, W. Chen et al., In situ phosphatizing of triphenylphosphine encapsulated within metal-organic frameworks to design atomic Co1-P1N3 interfacial structure for promoting catalytic performance. J. Am. Chem. Soc. 142, 8431–8439 (2020).

    [36] B. Wang, Y. Ren, Y. Zhu, S. Chen, S. Chang et al., Construction of Co3O4/ZnO heterojunctions in hollow N-doped carbon nanocages as microreactors for lithium-sulfur full batteries. Adv. Sci. 10, e2300860 (2023).

    [37] X. Sun, Y. Li, Y. Huang, Y. Cheng, S. Wang et al., Achieving super broadband electromagnetic absorption by optimizing impedance match of rGO sponge metamaterials. Adv. Funct. Mater. 32, 2107508 (2021).

    [38] X. Ren, J. Zhao, X. Li, J. Shao, B. Pan et al., In-situ spectroscopic probe of the intrinsic structure feature of single-atom center in electrochemical CO/CO2 reduction to methanol. Nat. Commun. 14, 3401 (2023).

    [39] J. Gao, Y. Wang, H. Wu, X. Liu, L. Wang et al., Construction of a sp3/sp2 carbon interface in 3D N-Doped nanocarbons for the oxygen reduction reaction. Angew. Chem. Int. Ed. 58, 15089–15097 (2019).

    [40] C. Tang, B.-Q. Li, Q. Zhang, L. Zhu, H.-F. Wang et al., CaO-templated growth of hierarchical porous graphene for high-power lithium–sulfur battery applications. Adv. Funct. Mater. 26, 577–585 (2016).

    [41] N. Ramaswamy, U. Tylus, Q. Jia, S. Mukerjee, Activity descriptor identification for oxygen reduction on nonprecious electrocatalysts: linking surface science to coordination chemistry. J. Am. Chem. Soc. 135, 15443–15449 (2013).

    [42] A. Zitolo, V. Goellner, V. Armel, M.-T. Sougrati, T. Mineva et al., Identification of catalytic sites for oxygen reduction in iron- and nitrogen-doped graphene materials. Nat. Mater. 14, 937–942 (2015).

    [43] Y. Chen, S. Ji, Y. Wang, J. Dong, W. Chen et al., Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction. Angew. Chem. Int. Ed. 56, 6937–6941 (2017).

    [44] H. Gong, Z. Wei, Z. Gong, J. Liu, G. Ye et al., Low-coordinated Co-N-C on oxygenated graphene for efficient electrocatalytic H2O2 production. Adv. Funct. Mater. 32, 2106886 (2021).

    [45] X. Wang, Y. Pan, H. Ning, H. Wang, D. Guo et al., Hierarchically micro- and meso-porous Fe-N4O-doped carbon as robust electrocatalyst for CO2 reduction. Appl. Catal. B Environ. 266, 118630 (2020).

    [46] M. Cao, X. Wang, W. Cao, X. Fang, B. Wen et al., Thermally driven transport and relaxation switching self-powered electromagnetic energy conversion. Small 14, e1800987 (2018).

    [47] H. Zhang, J. Cheng, H. Wang, Z. Huang, Q. Zheng et al., Initiating VB-group laminated NbS2 electromagnetic wave absorber toward superior absorption bandwidth as large as 6.48GHz through phase engineering modulation. Adv. Funct. Mater. 32, 2108194 (2022).

    [48] M. Ning, P. Jiang, W. Ding, X. Zhu, G. Tan et al., Phase manipulating toward molybdenum disulfide for optimizing electromagnetic wave absorbing in gigahertz. Adv. Funct. Mater. 31, 2011229 (2021).

    [49] Z. Wu, K. Pei, L. Xing, X. Yu, W. You et al., Enhanced microwave absorption performance from magnetic coupling of magnetic nanoparticles suspended within hierarchically tubular composite. Adv. Funct. Mater. 29, 1901448 (2019).

    [50] J. Qiao, X. Zhang, C. Liu, L. Lyu, Y. Yang et al., Non-magnetic bimetallic MOF-derived porous carbon-wrapped TiO2/ZrTiO4 composites for efficient electromagnetic wave absorption. Nano-Micro Lett. 13, 75 (2021).

    [51] Z. Gao, D. Lan, L. Zhang, H. Wu, Simultaneous manipulation of interfacial and defects polarization toward Zn/Co phase and ion hybrids for electromagnetic wave absorption. Adv. Funct. Mater. 31, 2106677 (2021).

    [52] T. Zhu, W. Shen, X. Wang, Y.-F. Song, W. Wang, Paramagnetic CoS2@MoS2 core-shell composites coated by reduced graphene oxide as broadband and tunable high-performance microwave absorbers. Chem. Eng. J. 378, 122159 (2019).

    [53] C. Xu, L. Wang, X. Li, X. Qian, Z. Wu et al., Hierarchical magnetic network constructed by CoFe nanoparticles suspended within “tubes on rods” matrix toward enhanced microwave absorption. Nano-Micro Lett. 13, 47 (2021).

    [54] Y. Song, F. Yin, C. Zhang, W. Guo, L. Han et al., Three-dimensional ordered mesoporous carbon spheres modified with ultrafine zinc oxide nanoparticles for enhanced microwave absorption properties. Nano-Micro Lett. 13, 76 (2021).

    [55] Z. Zhou, Q. Zhu, Y. Liu, Y. Zhang, Z. Jia et al., Construction of self-assembly based tunable absorber: lightweight, hydrophobic and self-cleaning properties. Nano-Micro Lett. 15, 137 (2023).

    [56] L. Wang, M. Huang, X. Qian, L. Liu, W. You et al., Confined magnetic-dielectric balance boosted electromagnetic wave absorption. Small 17, e2100970 (2021).

    [57] X. Qian, Y. Zhang, Z. Wu, R. Zhang, X. Li et al., Multi-path electron transfer in 1D double-shelled Sn@Mo2C/C tubes with enhanced dielectric loss for boosting microwave absorption performance. Small 17, e2100283 (2021).

    [58] X. Liang, Z. Man, B. Quan, J. Zheng, W. Gu et al., Environment-stable CoxNiy encapsulation in stacked porous carbon nanosheets for enhanced microwave absorption. Nano-Micro Lett. 12, 102 (2020).

    [59] F. Pan, Z. Liu, B. Deng, Y. Dong, X. Zhu et al., Lotus leaf-derived gradient hierarchical porous C/MoS2 morphology genetic composites with wideband and tunable electromagnetic absorption performance. Nano-Micro Lett. 13, 43 (2021).

    [60] H. Liang, G. Chen, D. Liu, Z. Li, S. Hui et al., Exploring the Ni 3d orbital unpaired electrons induced polarization loss based on Ni single-atoms model absorber. Adv. Funct. Mater. 33, 2212604 (2023).

    [61] F. Pan, M. Ning, Z. Li, D. Batalu, H. Guo et al., Sequential architecture induced strange dielectric-magnetic behaviors in ferromagnetic microwave absorber. Adv. Funct. Mater. 33, 2300374 (2023).

    [62] H. Jiang, L. Cai, F. Pan, Y. Shi, J. Cheng et al., Ordered heterostructured aerogel with broadband electromagnetic wave absorption based on mesoscopic magnetic superposition enhancement. Adv. Sci. 10, e2301599 (2023).

    [63] F. Pan, K. Pei, G.-Y. Chen, H. Guo, H. Jiang et al., Integrated electromagnetic device with on-off heterointerface for intelligent switching between wave-absorption and wave-transmission. Adv. Funct. Mater. 33, 6599 (2023).

    Jia Xu, Bei Li, Zheng Ma, Xiao Zhang, Chunling Zhu, Feng Yan, Piaoping Yang, Yujin Chen. Multifunctional Film Assembled from N-Doped Carbon Nanofiber with Co–N4–O Single Atoms for Highly Efficient Electromagnetic Energy Attenuation[J]. Nano-Micro Letters, 2024, 16(1): 240
    Download Citation