• High Power Laser Science and Engineering
  • Vol. 12, Issue 1, 010000e5 (2024)
Rui Ma1、2, Ke Hai Luo1, Jing Song He2、5, Wei Li Zhang3, Dian Yuan Fan1, Anderson S. L. Gomes4, and Jun Liu1、*
Author Affiliations
  • 1International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, China
  • 2Institute for Advanced Study, Shenzhen University, Shenzhen, China
  • 3Fiber Optics Research Centre, School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China
  • 4Departamento de Física, Universidade Federal de Pernambuco, Recife-PE, Brazil
  • 5Email: hejingsong@szu.edu.cn
  • show less
    DOI: 10.1017/hpl.2023.91 Cite this Article Set citation alerts
    Rui Ma, Ke Hai Luo, Jing Song He, Wei Li Zhang, Dian Yuan Fan, Anderson S. L. Gomes, Jun Liu. Digital generation of super-Gaussian perfect vortex beams via wavefront shaping with globally adaptive feedback[J]. High Power Laser Science and Engineering, 2024, 12(1): 010000e5 Copy Citation Text show less

    Abstract

    High-intensity vortex beams with tunable topological charges and low coherence are highly demanded in applications such as inertial confinement fusion (ICF) and optical communication. However, traditional optical vortices featuring nonuniform intensity distributions are dramatically restricted in application scenarios that require a high-intensity vortex beam owing to their ineffective amplification resulting from the intensity-dependent nonlinear effect. Here, a low-coherence perfect vortex beam (PVB) with a topological charge as high as 140 is realized based on the super-pixel wavefront-shaping technique. More importantly, a globally adaptive feedback algorithm (GAFA) is proposed to efficiently suppress the original intensity fluctuation and achieve a flat-top PVB with dramatically reduced beam speckle contrast. The GAFA-based flat-top PVB generation method can pave the way for high-intensity vortex beam generation, which is crucial for potential applications in ICF, laser processing, optical communication and optical trapping.
    $$\begin{align}{E}_l\left(r,\varphi \right)=\delta \left(r-{r}_0\right){\exp}\left( il\varphi \right),\end{align}$$ ((1))

    View in Article

    $$\begin{align}{E}_l\left(r,\varphi \right)={\exp}\left(-{\left(r-{r}_0\right)}^2/\Delta {r}^2\right){\exp}\left( il\varphi \right),\end{align}$$ ((2))

    View in Article

    $$\begin{align}{E}_{\mathrm{o}}=\mathrm{FT}^{-1}\left\{ \mathrm{FT}\left\{D\right\}\cdot M\right\},\end{align}$$ ((3))

    View in Article

    $$\begin{align}{E}_l\left(r,\varphi \right)={C}_{\alpha}{\exp}\left(-{\left(r-{r}_0\right)}^{\alpha }/\Delta {r}^{\alpha}\right){\exp}\left( il\varphi \right),\end{align}$$ ((4))

    View in Article

    $$\begin{align}{C}_{\alpha}={2}^{1/\alpha}/\sqrt{\pi \Delta {r}^2\Gamma \left(\left(\alpha +2\right)/\alpha \right)},\end{align}$$ ((5))

    View in Article

    $$\begin{align}{E}_{\mathrm{o}}=\mathrm{FT}^{-1}\left\{ \mathrm{FT}\left\{D\cdot {W}_{\mathrm{inc}}\right\}\cdot M\right\},\end{align}$$ ((6))

    View in Article

    Rui Ma, Ke Hai Luo, Jing Song He, Wei Li Zhang, Dian Yuan Fan, Anderson S. L. Gomes, Jun Liu. Digital generation of super-Gaussian perfect vortex beams via wavefront shaping with globally adaptive feedback[J]. High Power Laser Science and Engineering, 2024, 12(1): 010000e5
    Download Citation