• Photonics Research
  • Vol. 12, Issue 7, 1502 (2024)
Ya Zhong1,2,3, Haibo Yu1,2,6,*, Peilin Zhou4, Hongji Guo1,2..., Tianming Zhao1,2, Hao Luo1,2,3, Yangdong Wen5, Xiaoduo Wang1,2 and Lianqing Liu1,2,7,*|Show fewer author(s)
Author Affiliations
  • 1State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
  • 2Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
  • 3University of Chinese Academy of Sciences, Beijing 100049, China
  • 4College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China
  • 5Institute of Urban Rail Transportation, Southwest Jiaotong University, Chengdu 610000, China
  • 6e-mail: yuhaibo@sia.cn
  • 7e-mail: lqliu@sia.cn
  • show less
    DOI: 10.1364/PRJ.520479 Cite this Article Set citation alerts
    Ya Zhong, Haibo Yu, Peilin Zhou, Hongji Guo, Tianming Zhao, Hao Luo, Yangdong Wen, Xiaoduo Wang, Lianqing Liu, "Patterned microsphere-lens projection lithography using an electrohydrodynamic-jet-printing-assisted assembly," Photonics Res. 12, 1502 (2024) Copy Citation Text show less
    References

    [1] D. Mahecic, D. Gambarotto, K. M. Douglass. Homogeneous multifocal excitation for high-throughput super-resolution imaging. Nat. Methods, 17, 726-733(2020).

    [2] Q. Chen, J. Zhou, Q. Zheng. Multi-layer lithography using focal plane changing for SU-8 microstructures. Mater. Res. Express, 7, 065306(2020).

    [3] K. Kim, K.-W. Jang, J.-K. Ryu. Biologically inspired ultrathin arrayed camera for high-contrast and high-resolution imaging. Light. Sci. Appl., 9, 28(2020).

    [4] Z. Wang, T. Zhao, Y. Cai. Rapid, artifact-reduced, image reconstruction for super-resolution structured illumination microscopy. Innovation, 4, 100425(2023).

    [5] J.-I. Kato, N. Takeyasu, Y. Adachi. Multiple-spot parallel processing for laser micronanofabrication. Appl. Phys. Lett., 86, 044102(2005).

    [6] Y. Q. Liu, Z. Xiong, Y. L. Zhang. Breakthroughs in projection-enabled additive manufacturing: from novel strategies to cutting-edge applications. Innovation, 4, 100395(2023).

    [7] K. Zhong, Y. Gao, F. Li. Fabrication of PDMS microlens array by digital maskless grayscale lithography and replica molding technique. Optik, 125, 2413-2416(2014).

    [8] N. Luo, Z. Zhang. Fabrication of a curved microlens array using double gray-scale digital maskless lithography. J. Micromech. Microeng., 27, 035015(2017).

    [9] J. Chen, C. Gu, H. Lin. Soft mold-based hot embossing process for precision imprinting of optical components on non-planar surfaces. Opt. Express, 23, 20977-20985(2015).

    [10] T. Gissibl, S. Thiele, A. Herkommer. Two-photon direct laser writing of ultracompact multi-lens objectives. Nat. Photonics, 10, 554-560(2016).

    [11] S.-I. Bae, K. Kim, S. Yang. Multifocal microlens arrays using multilayer photolithography. Opt. Express, 28, 9082-9088(2020).

    [12] N. Jürgensen, B. Fritz, A. Mertens. A single-step hot embossing process for integration of microlens arrays in biodegradable substrates for improved light extraction of light-emitting devices. Adv. Mater. Technol., 6, 1900933394(2021).

    [13] M. Marini, A. Nardini, R. Martínez Vázquez. Microlenses fabricated by two-photon laser polymerization for cell imaging with non-linear excitation microscopy. Adv. Funct. Mater., 33, 2213926(2023).

    [14] D. McCloskey, J. J. Wang, J. F. Donegan. Low divergence photonic nanojets from Si3N4 microdisks. Opt. Express, 20, 128-140(2012).

    [15] G. Gu, P. Zhang, S. Chen. Inflection point: a perspective on photonic nanojets. Photon. Res., 9, 1157-1171(2021).

    [16] W. Wu, A. Katsnelson, O. G. Memis. A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars. Nanotechnology, 18, 485302(2007).

    [17] H. Zheng, Y. Zhou, C. F. Ugwu. Large-scale metasurfaces based on grayscale nanosphere lithography. ACS Photon., 8, 1824-1831(2021).

    [18] L. Li, W. Guo, Y. Yan. Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy. Light Sci. Appl., 2, e104(2013).

    [19] H. Zhu, W. Fan, S. Zhou. Polymer colloidal sphere-based hybrid solid immersion lens for optical super-resolution imaging. ACS Nano, 10, 9755-9761(2016).

    [20] S. Kwon, J. Park, K. Kim. Microsphere-assisted, nanospot, non-destructive metrology for semiconductor devices. Light Sci. Appl., 11, 32(2022).

    [21] Y. Xie, D. Cai, J. Pan. Chalcogenide microsphere-assisted optical super-resolution imaging. Adv. Opt. Mater., 10, 2102269(2022).

    [22] T. Zhang, P. Li, H. Yu. Fabrication of flexible microlens arrays for parallel super-resolution imaging. Appl. Surf. Sci., 504, 144375(2020).

    [23] M.-H. Wu, G. M. Whitesides. Fabrication of arrays of two-dimensional micropatterns using microspheres as lenses for projection photolithography. Appl. Phys. Lett., 78, 2273-2275(2001).

    [24] A. Bonakdar, M. Rezaei, R. L. Brown. Deep-UV microsphere projection lithography. Opt. Lett., 40, 2537-2540(2015).

    [25] C. García Núñez, W. T. Navaraj, F. Liu. Large-area self-assembly of silica microspheres/nanospheres by temperature-assisted dip-coating. ACS Appl. Mater. Interfaces, 10, 3058-3068(2018).

    [26] D. Guo, C. Li, Y. Wang. Precise assembly of particles for zigzag or linear patterns. Angew. Chem. Int. Ed. Engl., 56, 15348-15352(2017).

    [27] C. O’Connell, R. Sherlock, T. J. Glynn. Fabrication of a reusable microlens array for laser-based structuring. Opt. Eng., 49, 014201(2010).

    [28] C. Zhu, E. C. Kinzel. Microsphere photolithography using reusable microsphere array mask for low-cost infrared metasurface fabrication. J. Vac. Sci. Technol. B, 41, 033601(2023).

    [29] P. Zhou, H. Yu, W. Zou. Cross-scale additive direct-writing fabrication of micro/nano lens arrays by electrohydrodynamic jet printing. Opt. Express, 28, 6336-6349(2020).

    [30] Y. Zhong, H. Yu, P. Zhou. In situ electrohydrodynamic jet printing-based fabrication of tunable microlens arrays. ACS Appl. Mater. Interfaces, 13, 39550-39560(2021).

    [31] Y. Zhong, H. Yu, Y. Wen. Novel optofluidic imaging system integrated with tunable microlens arrays. ACS Appl. Mater. Interfaces, 15, 11994-12004(2023).

    [32] P. Zhou, H. Yu, Y. Zhong. Fabrication of waterproof artificial compound eyes with variable field of view based on the bioinspiration from natural hierarchical micro–nanostructures. Nano-Micro Lett., 12, 166(2020).

    [33] M. Gonidec, M. M. Hamedi, A. Nemiroski. Fabrication of nonperiodic metasurfaces by microlens projection lithography. Nano Lett., 16, 4125-4132(2016).

    [34] T. Zhang, H. Yu, P. Li. Microsphere-based super-resolution imaging for visualized nanomanipulation. ACS Appl. Mater. Interfaces, 12, 48093-48100(2020).

    [35] Y. Zhou, Y. Tang, Q. Deng. Contrast enhancement of microsphere-assisted super-resolution imaging in dark-field microscopy. Appl. Phys. Express, 10, 082501(2017).

    [36] K. Hui, P. Lai, H. Choi. Spectral conversion with fluorescent microspheres for light emitting diodes. Opt. Express, 16, 13-18(2008).

    [37] H. Wang, S. Yang, S.-N. Yin. Janus suprabead displays derived from the modified photonic crystals toward temperature magnetism and optics multiple responses. ACS Appl. Mater. Interfaces, 7, 8827-8833(2015).

    [38] J. Hou, M. Li, Y. Song. Patterned colloidal photonic crystals. Angew. Chem. Int. Ed. Engl., 57, 2544-2553(2018).

    Ya Zhong, Haibo Yu, Peilin Zhou, Hongji Guo, Tianming Zhao, Hao Luo, Yangdong Wen, Xiaoduo Wang, Lianqing Liu, "Patterned microsphere-lens projection lithography using an electrohydrodynamic-jet-printing-assisted assembly," Photonics Res. 12, 1502 (2024)
    Download Citation