• Optics and Precision Engineering
  • Vol. 31, Issue 17, 2564 (2023)
Peixiang ZHANG1,2, Qi WANG1,2, Renjing GAO1,2,*, Yang XIA1, and Zhenzhong WAN3
Author Affiliations
  • 1State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, School of Automotive Engineering, Dalian University of Technology, Dalian6024, China
  • 2Ningbo Institute of Dalian University of Technology, Ningbo315000, China
  • 3BYD Auto Industry Company Limited, Shenzhen518118, China
  • show less
    DOI: 10.37188/OPE.20233117.2564 Cite this Article
    Peixiang ZHANG, Qi WANG, Renjing GAO, Yang XIA, Zhenzhong WAN. Ground point cloud segmentation based on local threshold adaptive method[J]. Optics and Precision Engineering, 2023, 31(17): 2564 Copy Citation Text show less
    References

    [1] P Z WANG, W YAO. A new weakly supervised approach for ALS point cloud semantic segmentation. ISPRS Journal of Photogrammetry and Remote Sensing, 188, 237-254(2022).

    [2] Z Y ZHANG, J D SUN, Y C DAI et al. VRNet: learning the rectified virtual corresponding points for 3D point cloud registration. IEEE Transactions on Circuits and Systems for Video Technology, 32, 4997-5010(2022).

    [3] 张银波, 李昊阳, 孙剑峰, 等. Gm-APD激光雷达的双参量估计透烟雾成像算法[J]. 光学 精密工程, 2022, 30(19): 2370-2378. doi: 10.37188/ope.20223019.2370ZHANGY B, LIH Y, SUNJ F, et al. Imaging algorithm of dual-parameter estimation through smoke using Gm-APD lidar[J]. Opt. Precision Eng., 2022, 30(19): 2370-2378.(in Chinese). doi: 10.37188/ope.20223019.2370

    [4] 郝雯, 张雯静, 梁玮, 等. 面向三维点云的场景识别方法综述[J]. 光学 精密工程, 2022, 30(16): 1988-2005. doi: 10.37188/OPE.20223016.1988HAOW, ZHANGW J, LIANGW, et al. Scene recognition for 3D point clouds: a review[J]. Opt. Precision Eng., 2022, 30(16): 1988-2005.(in Chinese). doi: 10.37188/OPE.20223016.1988

    [5] J CHENG, D HE, C LEE. A simple ground segmentation method for LiDAR 3D point clouds, 171-175(2020).

    [6] 徐国艳, 牛欢, 郭宸阳, 等. 基于三维激光点云的目标识别与跟踪研究[J]. 汽车工程, 2020, 42(1): 38-46. doi: 10.19562/j.chinasae.qcgc.2020.01.006XUG Y, NIUH, GUOCH Y, et al. Research on target recognition and tracking based on 3D laser point cloud[J]. Automotive Engineering, 2020, 42(1): 38-46.(in Chinese). doi: 10.19562/j.chinasae.qcgc.2020.01.006

    [7] S THRUN, M MONTEMERLO, H DAHLKAMP et al. Stanley: The robot that won the DARPA Grand Challenge. Journal of Field Robotics, 23, 661-692(2006).

    [8] P CHU, S CHO et al. A fast ground segmentation method for 3D point cloud. Journal of Information Processing Systems, 13, 491-499(2017).

    [9] 蒋剑飞, 李其仲, 黄妙华, 等. 基于三维激光雷达的障碍物及可通行区域实时检测[J]. 激光与光电子学进展, 2019, 56(24): 242801. doi: 10.3788/lop56.242801JIANGJ F, LIQ ZH, HUANGM H, et al. Real-time detection of obstacles and passable areas based on three-dimensional lidar[J]. Laser & Optoelectronics Progress, 2019, 56(24): 242801.(in Chinese). doi: 10.3788/lop56.242801

    [10] 李炯, 赵凯, 白睿, 等. 基于射线坡度阈值的城市地面分割算法[J]. 光学学报, 2019, 39(9): 0928004. doi: 10.3788/aos201939.0928004LIJ, ZHAOK, BAIR, et al. Urban ground segmentation algorithm based on ray slope threshold[J]. Acta Optica Sinica, 2019, 39(9): 0928004.(in Chinese). doi: 10.3788/aos201939.0928004

    [11] P NARKSRI, E TAKEUCHI, Y NINOMIYA et al. A slope-robust cascaded ground segmentation in 3D point cloud for autonomous vehicles, 497-504(2018).

    [12] 冯绍权, 花向红, 段成文, 等. 一种自适应的坡度阈值地面点云分割方法[J]. 测绘科学, 2021, 46(1): 156-161.FENGSH Q, HUAX H, DUANC W, et al. An adaptive slope threshold method for ground point cloud segmentation[J]. Science of Surveying and Mapping, 2021, 46(1): 156-161.(in Chinese)

    [13] M VELAS, M SPANEL, M HRADIS et al. CNN for very fast ground segmentation in velodyne LiDAR data, 97-103(2018).

    [14] 释小松, 程英蕾, 薛豆豆, 等. 基于Point-Net的多源融合点云地物分类方法[J]. 激光与光电子学进展, 2020, 57(8): 081019. doi: 10.3788/lop57.081019SHIX S, CHENGY L, XUED D, et al. Object classification method for multi-source fusion point clouds based on point-net[J]. Laser & Optoelectronics Progress, 2020, 57(8): 081019.(in Chinese). doi: 10.3788/lop57.081019

    [15] A PAIGWAR, Ö ERKENT, D SIERRA-GONZALEZ et al. GndNet: fast ground plane estimation and point cloud segmentation for autonomous vehicles, 2150-2156(2021).

    [16] M HIMMELSBACH, F V HUNDELSHAUSEN, H J WUENSCHE. Fast segmentation of 3D point clouds for ground vehicles, 560-565(2010).

    [17] D ZERMAS, I IZZAT, N PAPANIKOLOPOULOS. Fast segmentation of 3D point clouds: a paradigm on LiDAR data for autonomous vehicle applications, 5067-5073(2017).

    [18] J BEHLEY, M GARBADE, A MILIOTO et al. SemanticKITTI: a dataset for semantic scene understanding of LiDAR sequences, 9296-9306(2019).

    [19] S LEE, H MYUNG. Patchwork: fast and robust ground segmentation solving partial under-segmentation using 3D point cloud, 13276-13283(2022).

    [20] 邵靖滔, 杜常清, 邹斌. 基于点云簇组合特征的激光雷达地面分割方法[J]. 激光与光电子学进展, 2021, 58(4): 0428001. doi: 10.3788/lop202158.0428001SHAOJ T, DUCH Q, ZOUB. Lidar ground segmentation method based on point cloud cluster combination feature[J]. Laser & Optoelectronics Progress, 2021, 58(4): 0428001.(in Chinese). doi: 10.3788/lop202158.0428001

    [21] 张凯, 于春磊, 赵亚丽, 等. 基于自适应阈值的三维激光点云地面分割算法研究[J]. 汽车工程, 2021, 43(7): 1005-1012.ZHANGK, YUCH L, ZHAOY L, et al. Research on ground segmentation algorithm based on adaptive thresholds for 3D laser point clouds[J]. Automotive Engineering, 2021, 43(7): 1005-1012. (in Chinese)

    CLP Journals

    [1] Jingmin TU, Jin YAN, Li LI, Jian YAO, Jie LI, Yanfei KANG. Airborne point cloud classification integrating edge convolution and global-local self-attention[J]. Optics and Precision Engineering, 2024, 32(24): 3658

    Peixiang ZHANG, Qi WANG, Renjing GAO, Yang XIA, Zhenzhong WAN. Ground point cloud segmentation based on local threshold adaptive method[J]. Optics and Precision Engineering, 2023, 31(17): 2564
    Download Citation