• Advanced Photonics Nexus
  • Vol. 3, Issue 4, 046004 (2024)
Dandan Yang1, Jianhao Chen1, Jiachang Wu1, Hao Zhang1..., Xiaofeng Liu2, Jianrong Qiu3, Zhongmin Yang4 and Guoping Dong1,*|Show fewer author(s)
Author Affiliations
  • 1South China University of Technology, School of Materials Science and Engineering, State Key Laboratory of Luminescent Materials and Devices, Guangzhou, China
  • 2Zhejiang University, School of Materials Science and Engineering, Hangzhou, China
  • 3Zhejiang University, College of Optical Science and Engineering, State Key Laboratory of Modern Optical Instrumentation, Hangzhou, China
  • 4South China University of Technology, School of Physics and Optoelectronics, Guangzhou, China
  • show less
    DOI: 10.1117/1.APN.3.4.046004 Cite this Article Set citation alerts
    Dandan Yang, Jianhao Chen, Jiachang Wu, Hao Zhang, Xiaofeng Liu, Jianrong Qiu, Zhongmin Yang, Guoping Dong, "Manipulable multipurpose nanothermometers based on a fluorescent hybrid glass fiber microsphere cavity," Adv. Photon. Nexus 3, 046004 (2024) Copy Citation Text show less
    References

    [1] J. J. Zhou et al. Advances and challenges for fluorescence nanothermometry. Nat. Methods, 17, 967-980(2020).

    [2] C. D. S. Brites et al. Instantaneous ballistic velocity of suspended Brownian nanocrystals measured by upconversion nanothermometry. Nat. Nanotechnol., 11, 851-856(2016).

    [3] C. D. S. Brites, S. Balabhadra, L. D. Carlos. Lanthanide-based thermometers: at the cutting-edge of luminescence thermometry. Adv. Opt. Mater., 7, 1801239(2019).

    [4] H. Suo et al. Rational design of ratiometric luminescence thermometry based on thermally coupled levels for bioapplications. Laser Photonics Rev., 15, 2000319(2021).

    [5] J. S. Donner et al. Mapping intracellular temperature using green fluorescent protein. Nano Lett., 12, 2107-2111(2012).

    [6] K. Okabe et al. Intracellular temperature mapping with a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy. Nat. Commun., 3, 1714(2012).

    [7] P. Low et al. High-spatial-resolution surface-temperature mapping using fluorescent thermometry. Small, 4, 908-914(2008).

    [8] F. Vetrone et al. Temperature sensing using fluorescent nanothermometers. ACS Nano, 4, 3254-3258(2010).

    [9] S. Kalytchuk et al. Temperature-dependent exciton and trap-related photoluminescence of CdTe quantum dots embedded in a NaCl matrix: implication in thermometry. Small, 12, 466-476(2016).

    [10] Z. H. Zhou et al. Nonlinear thermal emission and visible thermometry. Adv. Photonics, 4, 045001(2022).

    [11] R. G. Geitenbeek et al. In situ luminescence thermometry to locally measure temperature gradients during catalytic reactions. ACS Catal., 8, 2397-2401(2018).

    [12] C. Mi et al. Ultrasensitive ratiometric nanothermometer with large dynamic range and photostability. Chem. Mater., 31, 9480-9487(2019).

    [13] G. Kucsko et al. Nanometre-scale thermometry in a living cell. Nature, 500, 54-58(2013).

    [14] M. Xu et al. Ratiometric nanothermometer in vivo based on triplet sensitized upconversion. Nat. Commun., 9, 2698(2018).

    [15] L. N. He, S. K. Ozdemir, L. Yang. Whispering gallery microcavity lasers. Laser Photonics Rev., 7, 60-82(2013).

    [16] B. Jiang et al. Simultaneous ultraviolet, visible, and near-infrared continuous-wave lasing in a rare-earth-doped microcavity. Adv. Photonics, 4, 046003(2022).

    [17] X. Jiang et al. Whispering-gallery sensors. Matter, 3, 371-392(2020).

    [18] A. Fernandez-Bravo et al. Continuous-wave upconverting nanoparticle microlasers. Nat. Nanotechnol., 13, 572-577(2018).

    [19] Y. F. Shang et al. Low threshold lasing emissions from a single upconversion nanocrystal. Nat. Commun., 11, 6156(2020).

    [20] S. L. Kang et al. Enhanced 2  μm mid-infrared laser output from Tm3+-activated glass ceramic microcavities. Laser Photonics Rev., 14, 1900396(2020). https://doi.org/10.1002/lpor.201900396

    [21] X. Yang et al. Fiber optofluidic microlasers: structures, characteristics, and applications. Laser Photonics Rev., 16, 2100171(2022).

    [22] Y. F. Xiong, F. Xu. Multifunctional integration on optical fiber tips: challenges and opportunities. Adv. Photonics, 2, 064001(2020).

    [23] W. Yan et al. Thermally drawn advanced functional fibers: new frontier of flexible electronics. Mater. Today, 35, 168-194(2020).

    [24] G. M. Tao et al. Infrared fibers. Adv. Opt. Photonics, 7, 379-458(2015).

    [25] G. M. Tao et al. Multimaterial fibers. Int. J. Appl. Glasss Sci., 3, 349-368(2012).

    [26] M. Ferrera et al. Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures. Nat. Photonics, 2, 737-740(2018).

    [27] Q. W. Pan et al. Nanocrystal-in-glass composite (NGC): a powerful pathway from nanocrystals to advanced optical materials. Prog. Mater. Sci., 130, 100998(2022).

    [28] L. Yang, K. J. Vahala. Gain functionalization of silica microresonators. Opt. Lett., 28, 592-594(2003).

    [29] H. Takashima et al. Fiber-microsphere laser with a submicrometer sol-gel silica glass layer codoped with erbium, aluminum, and phosphorus. Appl. Phys. Lett., 90, 101130(2007).

    [30] P. T. Snee et al. Whispering-gallery-mode lasing from a semiconductor nanocrystal/microsphere resonator composite. Adv. Mater., 17, 1131-1136(2005).

    [31] T. C. Ouyang et al. Microlaser output from rare-earth ion-doped nanocrystal-in-glass microcavities. Adv. Opt. Mater., 7, 1900197(2019).

    [32] B. Zhou et al. NIR II-responsive photon upconversion through energy migration in an ytterbium sublattice. Nat. Photonics, 14, 760-766(2020).

    [33] H. Fares et al. Nano-silver enhanced luminescence of Er3+ ions embedded in tellurite glass, vitro-ceramic and ceramic: impact of heat treatment. RSC Adv., 6, 31136-31145(2016). https://doi.org/10.1039/C6RA02095J

    [34] N. Bogdan et al. Synthesis of ligand-free colloidally stable water dispersible brightly luminescent lanthanide-doped upconverting nanoparticles. Nano Lett., 11, 835-840(2011).

    [35] R. T. Wu et al. Optical depletion mechanism of upconverting luminescence and its potential for multi-photon STED-like microscopy. Opt. Express, 23, 32401-32412(2015).

    [36] X. Y. Li et al. Two-wavelength two-photon process for optical selection of rare-earth ions. J. Alloy. Compd., 660, 226-230(2016).

    [37] D. J. Gargas et al. Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging. Nat. Nanotechnol., 9, 300-305(2014).

    [38] L. Yan et al. Activating ultrahigh thermoresponsive upconversion in an erbium sublattice for nanothermometry and information security. Nano Lett., 22, 7042-7048(2022).

    [39] D. D. Yang et al. Weakening thermal quenching to enhance luminescence of Er3+ doped β-NaYF4 nanocrystals via acid-treatment. J. Am. Ceram. Soc., 102, 6027-6037(2019). https://doi.org/10.1111/jace.16490

    [40] T. Q. Trung et al. A stretchable strain-insensitive temperature sensor based onfree-standing elastomeric composite fibers for on-body monitoring of skin temperature. ACS Appl. Mater. Interfaces, 11, 2317-2327(2018).

    [41] S. A. Wade, S. F. Collins, G. W Baxter. Fluorescence intensity ratio technique for optical fiber point temperature sensing. J. Appl. Phys., 94, 4743-4756(2003).

    [42] A. H. Khalid, K. Kontis. 2D surface thermal imaging using rise-time analysis from laser-induced luminescence phosphor thermometry. Meas. Sci. Technol., 20, 025305(2009).

    [43] S. Balabhadra et al. Upconverting nanoparticles working as primary thermometers in different media. J. Phys. Chem. C, 121, 13962-13968(2017).

    [44] S. F. Collins et al. Comparison of fluorescence-based temperature sensor schemes: theoretical analysis and experimental validation. J. Appl. Phys., 84, 4649-4654(1998).

    [45] J. J. Zhou et al. Activation of the surface dark-layer to enhance upconversion in a thermal field. Nat. Photonics, 12, 154-158(2018).

    [46] H. Suo et al. Constructing multiform morphologies of YF3:Er3+/Yb3+ up-conversion nano/micro-crystals towards sub-tissue thermometry. Chem. Eng. J., 313, 65-73(2017). https://doi.org/10.1016/j.cej.2016.12.064

    [47] B. S. Cao et al. Wide-range and highly-sensitive optical thermometers based on the temperature-dependent energy transfer from Er to Nd in Er/Yb/Nd codoped NaYF4 upconversion nanocrystals. Chem. Eng. J., 385, 123906(2020). https://doi.org/10.1016/j.cej.2019.123906

    [48] P. Du et al. Simultaneous phase and size manipulation in NaYF4:Er3+/Yb3+ upconverting nanoparticles for a non-invasion optical thermometer. New J. Chem., 41, 13855-13861(2017). https://doi.org/10.1039/C7NJ03165C

    [49] H. Suo et al. Sensitivity modulation of upconverting thermometry through engineering phonon energy of a matrix. ACS Appl. Mater. Interfaces, 8, 30312-30319(2016).

    [50] M. H. Liu et al. Multifunctional CaSc2O4:Yb3+/Er3+ one-dimensional nanofibers: electrospinning synthesis and concentration-modulated upconversion luminescent properties. J. Mater. Chem. C, 5, 4025-4033(2017). https://doi.org/10.1039/C7TC00188F

    [51] T. V. Gavrilovic et al. Multifunctional Eu3+-and Er3+/Yb3+-doped GdVO4 nanoparticles synthesized by reverse micelle method. Sci. Rep., 4, 4209(2014). https://doi.org/10.1038/srep04209

    [52] M. Lin et al. Facile synthesis of mono-disperse sub-20 nm NaY(WO4)2:Er3+,Yb3+ upconversion nanoparticles: a new choice for nanothermometry. J. Mater. Chem. C, 7, 2971-2977(2019). https://doi.org/10.1039/C8TC05669B

    [53] P. Du, J. S. Yu. Near-infrared light-triggered visible upconversion emissions in Er3+/Yb3+-codoped Y2Mo4O15 microparticles for simultaneous noncontact optical thermometry and solid-state lighting. Ind. Eng. Chem. Res., 57, 13077-13086(2018). https://doi.org/10.1021/acs.iecr.8b02938

    Dandan Yang, Jianhao Chen, Jiachang Wu, Hao Zhang, Xiaofeng Liu, Jianrong Qiu, Zhongmin Yang, Guoping Dong, "Manipulable multipurpose nanothermometers based on a fluorescent hybrid glass fiber microsphere cavity," Adv. Photon. Nexus 3, 046004 (2024)
    Download Citation