• Frontiers of Optoelectronics
  • Vol. 4, Issue 1, 108 (2011)
Gentian YUE, Jihuai WU*, Yaoming XIAO, Jianming LIN, and Miaoliang HUANG
Author Affiliations
  • Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Institute of Materials Physical Chemistry, Huaqiao University, Quanzhou 362021, China
  • show less
    DOI: 10.1007/s12200-011-0203-4 Cite this Article
    Gentian YUE, Jihuai WU, Yaoming XIAO, Jianming LIN, Miaoliang HUANG. Flexible solar cells based on PCBM/P3HT heterojunction[J]. Frontiers of Optoelectronics, 2011, 4(1): 108 Copy Citation Text show less
    References

    [1] O’Regan B, Gr tzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353(6346): 737-740

    [2] Gr tzel M. Photoelectrochemical cells. Nature, 2001, 414(6861): 338-344

    [3] Gr tzel M. Recent advances in sensitized mesoscopic solar cells. Accounts of Chemical Research, 2009, 42(11): 1788-1798

    [4] Lan Z, Wu J, Hao S, Lin J, Huang M, Huang Y. Template-free synthesis of closed-microporous hybrid and its application in quasisolid-state dye-sensitized solar cells. Energy & Environmental Science, 2009, 2(5): 524-528

    [5] Lindstr m H, Holmberg A, Magnusson E, Malmqvist L, Hagfeldt A. A new method to make dye-sensitized nanocrystalline solar cells at room temperature. Journal of Photochemistry and Photobiology A: Chemistry, 2001, 145(1-2): 107-112

    [6] Longo C, Freitas J, DePaoli M. Performance and stability of TiO2/dye solar cells assembled with flexible electrodes and a polymer electrolyte. Journal of Photochemistry and Photobiology A: Chemistry, 2003, 159(1): 33-39

    [7] Wu J H, Lan Z, Hao S C, Li P J, Huang M L, Fang L Q, Huang Y F. Progress on the electrolytes for dye-sensitized solar cells. Pure and Applied Chemistry, 2008, 80(11): 2241-2258

    [8] Huynh W U, Dittmer J J, Alivisatos A P. Hybrid nanorod-polymer solar cells. Science, 2002, 295(5564): 2425-2427

    [9] Brabec C J, Sariciftci N S, Hummelen J C. Plastic solar cells. Advanced Functional Materials, 2001, 11(1): 15-26

    [10] Yu G, Gao J, Hummelen J C, Wudl F, Heeger A J. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science, 1995, 270(5243): 1789-1791

    [11] Roman L S, Andersson M R, Yohanms T, Inganas O. Photodiode performance and nanostructure of polythiophene/C60 blends. Advanced Materials, 1997, 9(15): 1164-1168

    [12] Zhang D, Downing J A, Knorr F J, McHale J L. Room-temperature preparation of nanocrystalline TiO2 films and the influence of surface properties on dye-sensitized solar energy conversion. Journal of Physical Chemistry B, 2006, 110(43): 21890-21898

    [13] Wu J H, Lan Z, Lin J M, Huang M L, Hao S C, Sato T, Yin S. A novel thermosetting gel electrolyte for stable quasi-solid-state dyesensitized solar cells. Advanced Materials, 2007, 19(22): 4006-4011

    [14] Wu J H, Hao S C, Lan Z, Lin J M, Huang M L, Huang Y F, Li P J, Yin S, Sato T. An all-solid-state dye-sensitized solar cell-based poly (N-alkyl-4-vinyl-pyridine iodide) electrolyte with efficiency of 5.64%. Journal of the American Chemical Society, 2008, 130(35): 11568-11569

    [15] Gutierrez T, Zumeta I, Vigil E, Hernández M A, Domènecha X, Ayllón J A. New low-temperature preparation method of the TiO2 porous photoelectrode for dye-sensitized solar cells using UV irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 2005, 175(2-3): 165-171

    [16] Nemoto J, Sakata M, Hoshi T, Uenoa H, Kaneko M. All-plastic dyesensitized solar cell using a polysaccharide film containing excess redox electrolyte solution. Journal of Electroanalytical Chemistry, 2007, 599(1): 23-30

    [17] Gr tzel M. Perspectives for dye-sensitized nanocrystalline solar cells. Progress in Photovoltaics, 2000, 8(1): 171-185

    [18] Nazeeruddin M K, Péchy P, Renouard T, Zakeeruddin S M, Humphry-Baker R, Comte P, Liska P, Cevey L, Costa E, Shklover V, Spiccia L, Deacon G B, Bignozzi C A, Gr tzel M. Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells. Journal of the American Chemical Society, 2001, 123(8): 1613-1624

    [19] Ferber J, Stangl R, Luther J. An electrical model of the dyesensitized solar cell. Solar Energy Materials and Solar Cells, 1998, 53(1-2): 29-54

    [20] Oku T, Nagaoka S, Suzuki A, Kikuchia K, Hayashib V, Inukaib H, Sakuragib H, Soga T. Formation and characterization of polymer/fullerene bulk heterojunction solar cells. Journal of Physics and Chemistry of Solids, 2008, 69(5-6): 1276-1279

    [21] Wu J H, Yue G T, Xiao Y M, Ye H, Lin J, Huang M L. Application of a polymer heterojunction in dye-sensitized solar cells. Electrochimica Acta, 2010, 55(20): 5798-5802

    [22] Al-Ibrahim M, Ambacher O, Sensfuss S, Gobsch G. Effects of solvent and annealing on the improved performance of solar cells based on poly(3-hexylthiophene): Fullerene. Applied Physics Letters, 2005, 86(20): 201120

    [23] Senadeera G, Kitamura T, Wada Y, Yanagida S. Photosensitization of nanocrystalline TiO2 films by a polymer with two carboxylic groups, poly (3-thiophenemalonic acid). Solar Energy Materials and Solar Cells, 2005, 88(3): 315-322

    [24] Lee J, Kim W, Lee H, Shin W S, Jin S H, Lee W K, Kim M R. Preparations and photovoltaic properties of dye-sensitized solar cells using thiophene-based copolymers as polymer electrolytes. Polymers for Advanced Technologies, 2006, 17(9-10): 709-714

    [25] Gebeyehu D, Brabec C J, Saricifci N S, Vangeneugden D, Kiebooms R, Vanderzande D, Kienbergerc F, Schindler H. Hybrid solar cells based on dye-sensitized nanoporous TiO2 electrodes and conjugated polymers as hole transport materials. Synthetic Metals, 2001, 125(3): 279-287

    [26] Mwaura J K, Zhao X Y, Jiang H, Schanze K S, Reynolds J R. Spectral broadening in nanocrystalline TiO2 solar cells based on poly(p-phenylene ethynylene) and polythiophene sensitizers. Chemistry of Materials, 2006, 18(26): 6109-6111

    [27] Yue G T, Wu J H, Xiao Y M, Ye H F, Xie G X, Lan Z, Li Q H, Huang M L, Lin J M. Flexible dye-sensitized solar cell based on PCBM/P3HT heterojunction. Chinese Science Bulletin, 2010, 55(9): 835-840 (in chinese)

    Gentian YUE, Jihuai WU, Yaoming XIAO, Jianming LIN, Miaoliang HUANG. Flexible solar cells based on PCBM/P3HT heterojunction[J]. Frontiers of Optoelectronics, 2011, 4(1): 108
    Download Citation