• Journal of the Chinese Ceramic Society
  • Vol. 51, Issue 4, 1034 (2023)
CHU Xiangfeng1,*, BAI Yuying1, ZHANG Yin1, and LIANG Shiming2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: Cite this Article
    CHU Xiangfeng, BAI Yuying, ZHANG Yin, LIANG Shiming. Preparation and Ammonia Sensing Properties of Ti3C2Tx-MgFe2O4 Composite Materials[J]. Journal of the Chinese Ceramic Society, 2023, 51(4): 1034 Copy Citation Text show less
    References

    [1] XIONG Y, XU W W, DING D G, et al. Ultra-sensitive NH3 sensor based on flower-shaped SnS2 nanostructures with sub-μL/L detection ability[J]. J Hazard Mater, 2018, 341: 159-167.

    [2] JEEVITHA G, ABHINAYAA R, MANGALARAJ D, et al. Porous reduced graphene oxide (rGO)/WO3 nanocomposites for the enhanced detection of NH3 at room temperature[J]. Nanoscale Adv, 2019, 5: 1799-1811.

    [3] WU M, HE M, HU Q K, et al. Ti3C2 MXene-based sensors with high selectivity for NH3 detection at room temperature[J]. ACS Sens, 2019, 4: 2763-2770.

    [4] WANG S, JIANG Y D, LIU B H, et al. Ultrathin Nb2CTx nanosheets-supported polyaniline nanocomposite: Enabling ultrasensitive NH3 detection[J]. Sens Actuators B: Chem, 2021, 343: 130069.

    [5] ABDULLA S, MATHEW T L, PULLITHADATHIL B. Highly sensitive, room temperature gas sensor based on polyaniline- multiwalled carbon nanotubes (PANI/MWCNTs) nanocomposite for trace-level ammonia detection[J]. Sens Actuators B: Chem, 2015, 221: 1523-1534.

    [6] MAOUT P L, WOJKIEWICZ J-L, REDON N, et al. Polyaniline nanocomposites based sensor array for breath ammonia analysis. Portable e-nose approach to non-invasive diagnosis of chronic kidney disease[J]. Sens Actuators B: Chem, 2018, 274: 616-626.

    [7] SIVAKUMAR N, GNANAKAN S R P, KARTHIKEYAN K, et al. Nanostructured MgFe2O4 as anode materials for lithium-ion batteries[J]. J Alloy Compd, 2011, 509: 7038-7041.

    [8] JESEENTHARANI V, MARY GEORGE, JEYARAJ B, et al. Synthesis of metal ferrite (MFe2O4, M=Co, Cu, Mg, Ni, Zn) nanoparticles as humidity sensor materials[J]. J Exp Nanosci, 2013, 8(3): 358-370.

    [10] YANG Liufang, LI Xing, ZHAO Heyun, et al. J Chin Ceram Soc, 2004, 32(12): 1491-1495.

    [11] NAGARAJAN V, THAYUMANAVAN A. MgFe2O4 thin films for detection of ethanol and acetone vapours[J]. Surf Eng, 2018, 34(9): 711-720.

    [12] HANKARE P P, JADHAV S D, SANKPAL U B, et al. Gas sensing properties of magnesium ferrite prepared by co-precipitation method[J]. J Alloy Compd, 2009, 488: 270-272.

    [14] BAO Sijie, BU Xin, BAI Yuying, et al. J Chin Ceram Soc, 2022, 50(10): 1-8.

    [15] HERMAWAN A, ZHANG B, TAUFIK A, et al. CuO nanoparticles/Ti3C2Tx MXene hybrid nanocomposites for detection of toluene gas[J]. ACS Appl Energ Mater, 2020, 3: 4755-4766.

    [16] SUN S B, WANG M W, CHANG X T, et al. W18O49/Ti3C2Tx Mxene nanocomposites for highly sensitive acetone gas[J]. Sens Actuators B: Chem, 2020, 304: 127274-127285.

    [17] LIANG D, SONG P, LIU M, et al. 2D/2D SnO2 nanosheets/Ti3C2Tx MXene nanocomposites for detection of triethylamine at low temperature[J]. Ceram Int, 2022, 48: 9059-9066.

    [18] SENGUPTA A, RAO B V B, SHARMA N, et al. Comparative evaluation of MAX, MXene, NanoMAX, and NanoMAX-derived- MXene for microwave absorption and Li ion battery anode applications[J]. Nanoscale, 2020, 12(15): 8466-8476.

    [19] HE L F, GAO C P, YANG L, et al. Facile synthesis of MgGa2O4/ graphene composites for room temperature acetic acid gas sensing[J]. Sens Actuators B: Chem, 2020, 306: 127453.

    [21] MAO Wei, GAO Jiyun, HOU Ming, et al. J Chin Ceram Soc, 2021, 49(3): 519-527.

    [22] YIN Y H, LIU W F, HUO N N, et al. Synthesis of vesicle-like MgFe2O4/graphene 3D network anode material with enhanced lithium storage performance[J]. ACS Sustain Chem Eng, 2017, 5: 563-570.

    [23] CHENG R F, WANG Z H, CUI C, et al. One-step incorporation of nitrogen and vanadium between Ti3C2Tx MXene interlayers enhances lithium ion storage capability[J]. J Phys Chem C, 2020, 124: 6012-6021.

    [24] BARATHIRAJA C, MANIKANDAN A, UDUMAN MOHIDEEN A M, et al. Magnetically recyclable spinel MnxNi1-xFe2O4 (x=0.0-0.5) nano-photocatalysts: Structural, morphological and opto-magnetic properties[J]. J Supercond Nov Magn, 2016, 29: 477-486.

    [26] JIANG Heyan, WU Hao, HU Zhide, et al. Acta Math Sci (in Chinese), 2021, 41(3): 969-979.

    [28] NAN Lan, LIAN Chaoqun, GENG Huikai, et al. Inorg Chem Ind (in Chinese), 2020, 52(12): 59-63.

    [29] WANG B J, MA S Y, PEI S T, et al. High specific surface area SnO2 prepared by calcining Sn-MOFs and their formaldehyde-sensing characteristics[J]. Sens Actuators B: Chem, 2020, 321: 128560.

    [30] WANG S, LIU B H, DUAN Z H, et al. PANI nanofibers-supported Nb2CTx nanosheets-enabled selective NH3 detection driven by TENG at room temperature[J]. Sens Actuators B: Chem, 2021, 327: 128923.

    [31] ZHANG Y G, JIANG Y D, DUAN Z H, et al. Highly sensitive and selective NO2 sensor of alkalized V2CTx MXene driven by interlayer swelling[J]. Sens Actuators B: Chem, 2021, 344: 130150.

    [32] SIVASANKARAN B R, BALAJI M. Novel gallium oxide/reduced graphene oxide nanocomposite for ammonia gas sensing application[J]. Mater Lett, 2021, 288: 129386.

    [33] Duong V T, Nguyen C T, Luong H B, et al. Ultralow-detection limit ammonia gas sensors at room temperature based on MWCNT/WO3 nanocomposite and effect of humidity[J]. Solid State Sci, 2021, 113: 106534.

    CHU Xiangfeng, BAI Yuying, ZHANG Yin, LIANG Shiming. Preparation and Ammonia Sensing Properties of Ti3C2Tx-MgFe2O4 Composite Materials[J]. Journal of the Chinese Ceramic Society, 2023, 51(4): 1034
    Download Citation